{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:53:27Z","timestamp":1726851207312},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1016\/j.compbiomed.2022.105444","type":"journal-article","created":{"date-parts":[[2022,3,29]],"date-time":"2022-03-29T20:36:30Z","timestamp":1648586190000},"page":"105444","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":96,"special_numbering":"C","title":["Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN"],"prefix":"10.1016","volume":"145","author":[{"given":"Qiu","family":"Guan","sequence":"first","affiliation":[]},{"given":"Yizhou","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Zihan","family":"Wei","sequence":"additional","affiliation":[]},{"given":"Ali Asghar","family":"Heidari","sequence":"additional","affiliation":[]},{"given":"Haigen","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Xu-Hua","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Jianwei","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Qianwei","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Huiling","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Feng","family":"Chen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2022.105444_bib1","doi-asserted-by":"crossref","DOI":"10.1016\/j.crad.2021.03.009","article-title":"Challenges and opportunities for artificial intelligence in oncological imaging","author":"Cheung","year":"2021","journal-title":"Clin. Radiol."},{"key":"10.1016\/j.compbiomed.2022.105444_bib2","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/j.phro.2021.05.007","article-title":"Machine learning applications in radiation oncology","volume":"19","author":"Field","year":"2021","journal-title":"Phys. Imaging Radiat. Oncol."},{"key":"10.1016\/j.compbiomed.2022.105444_bib3","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/j.crad.2020.11.113","article-title":"Artificial intelligence in radiology: relevance of collaborative work between radiologists and engineers for building a multidisciplinary team","volume":"76","author":"Mart\u00edn-Noguerol","year":"2021","journal-title":"Clin. Radiol."},{"key":"10.1016\/j.compbiomed.2022.105444_bib4","article-title":"Artificial intelligence in oncology: from bench to clinic","author":"Elkhader","year":"2021","journal-title":"Semin. Cancer Biol."},{"key":"10.1016\/j.compbiomed.2022.105444_bib5","doi-asserted-by":"crossref","first-page":"916","DOI":"10.1016\/j.ccell.2021.04.002","article-title":"HJWL Aerts, Artificial intelligence for clinical oncology","volume":"39","author":"Kann","year":"2021","journal-title":"Cancer Cell"},{"key":"10.1016\/j.compbiomed.2022.105444_bib6","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.compbiomed.2018.05.018","article-title":"Survey on deep learning for radiotherapy","volume":"98","author":"Meyer","year":"2018","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2022.105444_bib7","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102049","article-title":"Applying deep learning in digital breast tomosynthesis for automatic breast cancer detection: a review","volume":"71","author":"Bai","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2022.105444_bib8","article-title":"Convolutional neural networks for breast cancer detection in mammography: a survey, Comput","volume":"131","author":"Abdelrahman","year":"2021","journal-title":"Biol. Med."},{"key":"10.1016\/j.compbiomed.2022.105444_bib9","doi-asserted-by":"crossref","first-page":"698","DOI":"10.1016\/S2468-1253(19)30416-9","article-title":"Early detection of pancreatic cancer","volume":"5","author":"Pereira","year":"2020","journal-title":"Lancet Gastroenterol. Hepatol."},{"key":"10.1016\/j.compbiomed.2022.105444_bib10","first-page":"98","article-title":"Conditional infilling GANs for data augmentation in mammogram classification","volume":"vol. 11040","author":"Wu","year":"2018"},{"key":"10.1016\/j.compbiomed.2022.105444_bib11","first-page":"52","article-title":"Breast mass detection in mammograms via blending adversarial learning","volume":"vol. 11827","author":"Lin","year":"2019"},{"key":"10.1016\/j.compbiomed.2022.105444_bib12","first-page":"2672","article-title":"Generative adversarial nets","author":"Goodfellow","year":"2014","journal-title":"Int. Conf. Neural Inf. Process. Systems"},{"key":"10.1016\/j.compbiomed.2022.105444_bib13","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2020.104029","article-title":"Assisting Barrett's esophagus identification using endoscopic data augmentation based on Generative Adversarial Networks","volume":"126","author":"Souza","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2022.105444_bib14","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2020.103767","article-title":"Bone segmentation on whole-body CT using convolutional neural network with novel data augmentation techniques","volume":"121","author":"Noguchi","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2022.105444_bib15","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104520","article-title":"A computational pipeline for data augmentation towards the improvement of disease classification and risk stratification models: a case study in two clinical domains","volume":"134","author":"Pezoulas","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2022.105444_bib16","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104375","article-title":"CovidXrayNet: optimizing data augmentation and CNN hyperparameters for improved COVID-19 detection from CXR","volume":"133","author":"Monshi","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2022.105444_bib17","first-page":"111","article-title":"Lung nodule synthesis using CNN-Based latent data representation","volume":"vol. 11037","author":"Oliveira","year":"2018"},{"key":"10.1016\/j.compbiomed.2022.105444_bib18","first-page":"729","article-title":"Principled ultrasound data augmentation for classification of standard planes","volume":"vol. 12729","author":"Lee","year":"2021"},{"key":"10.1016\/j.compbiomed.2022.105444_bib19","first-page":"85","article-title":"Enabling data diversity: efficient automatic augmentation via regularized adversarial training","volume":"vol. 12729","author":"Gao","year":"2021"},{"key":"10.1016\/j.compbiomed.2022.105444_bib20","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101934","article-title":"Semi-supervised task-driven data augmentation for medical image segmentation","volume":"68","author":"Chaitanya","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2022.105444_bib21","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104269","article-title":"Domain adversarial networks and intensity-based data augmentation for male pelvic organ segmentation in cone beam CT","volume":"131","author":"Brion","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2022.105444_bib22","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2020.101667","article-title":"Tripartite-GAN: synthesizing liver contrast-enhanced MRI to improve tumor detection","volume":"63","author":"Zhao","year":"2020","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2022.105444_bib23","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102060","article-title":"Diverse data augmentation for learning image segmentation with cross-modality annotations","volume":"71","author":"Chen","year":"2021","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2022.105444_bib24","first-page":"757","article-title":"Adversarial pulmonary pathology translation for pairwise chest x-ray data augmentation","volume":"vol. 11769","author":"Xing","year":"2019"},{"key":"10.1016\/j.compbiomed.2022.105444_bib25","series-title":"Generative Image Translation for Data Augmentation of Bone Lesion Pathology, London, United Kingdom","author":"Gupta","year":"2019"},{"key":"10.1016\/j.compbiomed.2022.105444_bib26","first-page":"732","article-title":"CT-Realistic lung nodule simulation from 3D conditional generative adversarial networks for robust lung segmentation","volume":"vol. 11071","author":"Jin","year":"2018"},{"key":"10.1016\/j.compbiomed.2022.105444_bib27","first-page":"703","article-title":"Realistic breast mass generation through BIRADS category","volume":"vol. 11769","author":"Lee","year":"2019"},{"key":"10.1016\/j.compbiomed.2022.105444_bib28","first-page":"530","article-title":"Gastric cancer detection from endoscopic images using synthesis by GAN","volume":"vol. 11768","author":"Kanayama","year":"2019"},{"key":"10.1016\/j.compbiomed.2022.105444_bib29","series-title":"International Conference on Learning Representations","article-title":"Progressive growing of GANs for improved quality, stability, and variation","author":"Karras","year":"2018"},{"key":"10.1016\/j.compbiomed.2022.105444_bib30","doi-asserted-by":"crossref","DOI":"10.1038\/sdata.2017.177","article-title":"A curated mammography data set for use in computer-aided detection and diagnosis research","volume":"4","author":"Lee","year":"2017","journal-title":"Sci. Data"},{"key":"10.1016\/j.compbiomed.2022.105444_bib31","first-page":"5967","article-title":"Image-to-Image translation with conditional adversarial networks","volume":"vol. 632","author":"Isola","year":"2017"},{"key":"10.1016\/j.compbiomed.2022.105444_bib32","first-page":"1137","article-title":"Towards real-time object detection with region proposal networks","volume":"vol. 39","author":"Ren","year":"2015"},{"key":"10.1016\/j.compbiomed.2022.105444_bib33","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2020.103792","article-title":"Automated detection of COVID-19 cases using deep neural networks with X-ray images","volume":"121","author":"Ozturk","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2022.105444_bib34","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104569","article-title":"Deep learning model for automated kidney stone detection using coronal CT images","volume":"135","author":"Yildirim","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2022.105444_bib35","series-title":"IEEE Conference on Computer Vision and Pattern Recognition","first-page":"9300","article-title":"Deformable convNets V2: more deformable, better results","author":"Zhu","year":"2019"},{"key":"10.1016\/j.compbiomed.2022.105444_bib36","series-title":"IEEE International Conference on Computer Vision","first-page":"6687","article-title":"An empirical study of spatial attention mechanisms in deep networks","author":"Zhu","year":"2019"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522002360?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522002360?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,22]],"date-time":"2022-12-22T13:25:51Z","timestamp":1671715551000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482522002360"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":36,"alternative-id":["S0010482522002360"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.105444","relation":{},"ISSN":["0010-4825"],"issn-type":[{"value":"0010-4825","type":"print"}],"subject":[],"published":{"date-parts":[[2022,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.105444","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105444"}}