{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,21]],"date-time":"2024-09-21T07:10:13Z","timestamp":1726902613369},"reference-count":79,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher","award":["R01AR069055","U19AG05537301"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1016\/j.compbiomed.2022.105433","type":"journal-article","created":{"date-parts":[[2022,3,30]],"date-time":"2022-03-30T00:36:45Z","timestamp":1648600605000},"page":"105433","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["DeepDNAbP: A deep learning-based hybrid approach to improve the identification of deoxyribonucleic acid-binding proteins"],"prefix":"10.1016","volume":"145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8166-9037","authenticated-orcid":false,"given":"Md. Faruk","family":"Hosen","sequence":"first","affiliation":[]},{"given":"S.M. Hasan","family":"Mahmud","sequence":"additional","affiliation":[]},{"given":"Kawsar","family":"Ahmed","sequence":"additional","affiliation":[]},{"given":"Wenyu","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Mohammad Ali","family":"Moni","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0387-8818","authenticated-orcid":false,"given":"Hong-Wen","family":"Deng","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3394-8709","authenticated-orcid":false,"given":"Watshara","family":"Shoombuatong","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4952-0739","authenticated-orcid":false,"given":"Md Mehedi","family":"Hasan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2022.105433_bib1","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.bios.2018.05.060","article-title":"Application of bioconjugation chemistry on biosensor fabrication for detection of TAR-DNA binding protein 43","volume":"117","author":"Dai","year":"2018","journal-title":"Biosens. Bioelectron."},{"key":"10.1016\/j.compbiomed.2022.105433_bib2","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.106921","article-title":"StackPDB: predicting DNA-binding proteins based on XGB-RFE feature optimization and stacked ensemble classifier","volume":"99","author":"Zhang","year":"2021","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.compbiomed.2022.105433_bib3","unstructured":"B. Ren et al., \u201cGenome-Wide Location and Function of DNA Binding Proteins.\u201d [Online]. Available: www.sciencemag.org."},{"issue":"10","key":"10.1016\/j.compbiomed.2022.105433_bib4","doi-asserted-by":"crossref","first-page":"3149","DOI":"10.1093\/nar\/gkq061","article-title":"Boosting the prediction and understanding of DNA-binding domains from sequence","volume":"38","author":"Langlois","year":"2010","journal-title":"Nucleic Acids Res."},{"issue":"10","key":"10.1016\/j.compbiomed.2022.105433_bib5","doi-asserted-by":"crossref","DOI":"10.3390\/molecules22101602","article-title":"Identification of DNA-binding proteins using mixed feature representation methods","volume":"22","author":"Qu","year":"2017","journal-title":"Molecules"},{"issue":"12","key":"10.1016\/j.compbiomed.2022.105433_bib6","doi-asserted-by":"crossref","first-page":"3978","DOI":"10.1093\/nar\/gkn332","article-title":"DBD-Hunter: a knowledge-based method for the prediction of DNA-protein interactions","volume":"36","author":"Gao","year":"2008","journal-title":"Nucleic Acids Res."},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105433_bib7","doi-asserted-by":"crossref","first-page":"1040","DOI":"10.1016\/j.jmb.2009.02.023","article-title":"Identification of DNA-binding proteins using structural, electrostatic and evolutionary features","volume":"387","author":"Nimrod","year":"2009","journal-title":"J. Mol. Biol."},{"issue":"5","key":"10.1016\/j.compbiomed.2022.105433_bib8","doi-asserted-by":"crossref","first-page":"692","DOI":"10.1093\/bioinformatics\/btq019","article-title":"iDBPs: a web server for the identification of DNA binding proteins","volume":"26","author":"Nimrod","year":"2010","journal-title":"Bioinformatics"},{"issue":"9","key":"10.1016\/j.compbiomed.2022.105433_bib9","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0185587","article-title":"Improved detection of DNA-binding proteins via compression technology on PSSM information","volume":"12","author":"Wang","year":"2017","journal-title":"PLoS One"},{"issue":"22","key":"10.1016\/j.compbiomed.2022.105433_bib10","doi-asserted-by":"crossref","DOI":"10.1093\/nar\/gkv805","article-title":"DNA-binding protein prediction using plant specific support vector machines: validation and application of a new genome annotation tool","volume":"43","author":"Motion","year":"2015","journal-title":"Nucleic Acids Res."},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105433_bib11","doi-asserted-by":"crossref","first-page":"635","DOI":"10.1007\/s00726-007-0016-3","article-title":"Combing ontologies and dipeptide composition for predicting DNA-binding proteins","volume":"34","author":"Nanni","year":"2008","journal-title":"Amino Acids"},{"key":"10.1016\/j.compbiomed.2022.105433_bib12","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.jtbi.2018.10.027","article-title":"Effective DNA binding protein prediction by using key features via Chou's general PseAAC","volume":"460","author":"Adilina","year":"2019","journal-title":"J. Theor. Biol."},{"key":"10.1016\/j.compbiomed.2022.105433_bib13","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.jtbi.2018.05.006","article-title":"DPP-PseAAC: a DNA-binding protein prediction model using Chou's general PseAAC","volume":"452","author":"Rahman","year":"2018","journal-title":"J. Theor. Biol."},{"key":"10.1016\/j.compbiomed.2022.105433_bib14","doi-asserted-by":"crossref","first-page":"66545","DOI":"10.1109\/ACCESS.2018.2876656","article-title":"Improved DNA-Binding protein identification by incorporating evolutionary information into the Chou's PseAAC","volume":"6","author":"Fu","year":"2018","journal-title":"IEEE Access"},{"year":"2015","series-title":"2015 IEEE International Conference on Bioinformatics and Biomedicine Nov. 9-12","key":"10.1016\/j.compbiomed.2022.105433_bib15"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105433_bib16","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1109\/TNB.2016.2555951","article-title":"Identification of DNA-binding proteins by combining auto-cross covariance transformation and ensemble learning","volume":"15","author":"Liu","year":"2016","journal-title":"IEEE Trans. NanoBioscience"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105433_bib17","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1002\/minf.201400025","article-title":"PseDNA-Pro: DNA-binding protein identification by combining chou's PseAAC and Physicochemical distance transformation","volume":"34","author":"Liu","year":"2015","journal-title":"Mol. Inform."},{"key":"10.1016\/j.compbiomed.2022.105433_bib18","doi-asserted-by":"crossref","DOI":"10.1186\/1471-2105-8-463","article-title":"Identification of DNA-binding proteins using support vector machines and evolutionary profiles","volume":"8","author":"Kumar","year":"2007","journal-title":"BMC Bioinf."},{"key":"10.1016\/j.compbiomed.2022.105433_bib19","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.neucom.2016.03.025","article-title":"Identification of DNA binding proteins using evolutionary profiles position specific scoring matrix","volume":"199","author":"Waris","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compbiomed.2022.105433_bib20","article-title":"DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation","volume":"5","author":"Liu","year":"2015","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compbiomed.2022.105433_bib21","doi-asserted-by":"crossref","DOI":"10.1155\/2017\/4590609","article-title":"HMMBinder: DNA-binding protein prediction using HMM profile based features","author":"Zaman","year":"2017","journal-title":"BioMed Res. Int."},{"issue":"9","key":"10.1016\/j.compbiomed.2022.105433_bib22","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0024756","article-title":"iDNA-prot: identification of DNA binding proteins using random forest with grey model","volume":"6","author":"Lin","year":"2011","journal-title":"PLoS One"},{"issue":"9","key":"10.1016\/j.compbiomed.2022.105433_bib23","article-title":"IDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition","volume":"9","author":"Liu","year":"2014","journal-title":"PLoS One"},{"key":"10.1016\/j.compbiomed.2022.105433_bib24","first-page":"135","volume":"vol. 384","author":"Wei","year":"2017"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105433_bib25","doi-asserted-by":"crossref","DOI":"10.1038\/s41598-017-14945-1","article-title":"IDNAProt-ES: identification of DNA-binding proteins using evolutionary and structural features","volume":"7","author":"Chowdhury","year":"2017","journal-title":"Sci. Rep."},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105433_bib26","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1016\/j.jtbi.2010.12.024","article-title":"Some remarks on protein attribute prediction and pseudo amino acid composition","volume":"273","author":"Chou","year":"2011","journal-title":"J. Theor. Biol."},{"year":"2001","series-title":"Prediction of Protein Cellular Attributes Using Pseudo-amino Acid Composition","author":"Chou","key":"10.1016\/j.compbiomed.2022.105433_bib27"},{"key":"10.1016\/j.compbiomed.2022.105433_bib28","unstructured":"D. Julong Deynrt, \u201cIntroduction to Grey System Theory\u201d."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105433_bib29","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1038\/nmeth.1818","article-title":"HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment","volume":"9","author":"Remmert","year":"2012","journal-title":"Nat. Methods"},{"issue":"D1","key":"10.1016\/j.compbiomed.2022.105433_bib30","doi-asserted-by":"crossref","first-page":"D345","DOI":"10.1093\/nar\/gku1214","article-title":"The RCSB Protein Data Bank: views of structural biology for basic and applied research and education","volume":"43","author":"Rose","year":"2015","journal-title":"Nucleic Acids Res."},{"year":"1997","series-title":"Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces","author":"Storn","key":"10.1016\/j.compbiomed.2022.105433_bib31"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105433_bib32","doi-asserted-by":"crossref","first-page":"1419","DOI":"10.1109\/TCBB.2019.2893634","article-title":"TargetDBP: accurate DNA-binding protein prediction via sequence-based multi-view feature learning","volume":"17","author":"Hu","year":"2020","journal-title":"IEEE ACM Trans. Comput. Biol. Bioinf"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105433_bib33","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ab.2007.07.006","article-title":"Recent progress in protein subcellular location prediction","volume":"370","author":"Chou","year":"2007","journal-title":"Anal. Biochem."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105433_bib34","doi-asserted-by":"crossref","first-page":"1005","DOI":"10.1007\/s00232-015-9811-z","article-title":"TargetFreeze: identifying antifreeze proteins via a combination of weights using sequence evolutionary information and pseudo amino acid composition","volume":"248","author":"He","year":"2015","journal-title":"J. Membr. Biol."},{"year":"1997","series-title":"Gapped BLAST and PSI-BLAST: a New Generation of Protein Database Search Programs","author":"Altschul","key":"10.1016\/j.compbiomed.2022.105433_bib35"},{"issue":"11","key":"10.1016\/j.compbiomed.2022.105433_bib36","doi-asserted-by":"crossref","first-page":"444","DOI":"10.1016\/S0968-0004(98)01298-5","article-title":"Iterated profile searches with PSI-BLAST - a tool for discovery in protein databases","volume":"23","author":"Altschul","year":"1998","journal-title":"Trends Biochem. Sci."},{"key":"10.1016\/j.compbiomed.2022.105433_bib37","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.jtbi.2011.09.026","article-title":"MemHyb: predicting membrane protein types by hybridizing SAAC and PSSM","volume":"292","author":"Hayat","year":"2012","journal-title":"J. Theor. Biol."},{"issue":"10","key":"10.1016\/j.compbiomed.2022.105433_bib38","doi-asserted-by":"crossref","first-page":"1330","DOI":"10.1016\/j.biochi.2010.06.013","article-title":"Prediction of protein structural class for low-similarity sequences using support vector machine and PSI-BLAST profile","volume":"92","author":"Liu","year":"2010","journal-title":"Biochimie"},{"year":"2001","series-title":"Improving the Accuracy of PSI-BLAST Protein Database Searches with Composition-Based Statistics and Other Refinements","author":"Sch\u00e4ffer","key":"10.1016\/j.compbiomed.2022.105433_bib39"},{"key":"10.1016\/j.compbiomed.2022.105433_bib40","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.jtbi.2012.12.008","article-title":"A feature extraction technique using bi-gram probabilities of position specific scoring matrix for protein fold recognition","volume":"320","author":"Sharma","year":"2013","journal-title":"J. Theor. Biol."},{"issue":"5","key":"10.1016\/j.compbiomed.2022.105433_bib41","doi-asserted-by":"crossref","first-page":"1111","DOI":"10.1021\/jm1012984","article-title":"Tripeptide motifs in biology: targets for peptidomimetic design","volume":"54","author":"Ung","year":"2011","journal-title":"J. Med. Chem."},{"year":"2002","series-title":"Tripeptide Analysis of Protein Structures","author":"Anishetty","key":"10.1016\/j.compbiomed.2022.105433_bib42"},{"key":"10.1016\/j.compbiomed.2022.105433_bib43","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1016\/j.jprot.2012.09.006","article-title":"Identification of mycobacterial membrane proteins and their types using over-represented tripeptide compositions","volume":"77","author":"Ding","year":"2012","journal-title":"J. Proteonomics"},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105433_bib44","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1007\/s10441-013-9181-9","article-title":"Using over-represented tetrapeptides to predict protein submitochondria locations","volume":"61","author":"Lin","year":"2013","journal-title":"Acta Biotheor."},{"issue":"7","key":"10.1016\/j.compbiomed.2022.105433_bib45","doi-asserted-by":"crossref","first-page":"12940","DOI":"10.3390\/ijms150712940","article-title":"Identifying the subfamilies of voltage-gated potassium channels using feature selection technique","volume":"15","author":"Liu","year":"2014","journal-title":"Int. J. Mol. Sci."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105433_bib46","doi-asserted-by":"crossref","first-page":"558","DOI":"10.1039\/C4MB00645C","article-title":"Predicting the subcellular localization of mycobacterial proteins by incorporating the optimal tripeptides into the general form of pseudo amino acid composition","volume":"11","author":"Zhu","year":"2015","journal-title":"Mol. Biosyst."},{"year":"1997","series-title":"Understanding the Recognition of Protein Structural Classes by Amino Acid Composition","author":"Bahar","key":"10.1016\/j.compbiomed.2022.105433_bib47"},{"year":"2003","series-title":"Subcellular Location Prediction of Apoptosis Proteins","author":"Zhou","key":"10.1016\/j.compbiomed.2022.105433_bib48"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105433_bib49","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1093\/bioinformatics\/bth466","article-title":"Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes","volume":"21","author":"Chou","year":"2005","journal-title":"Bioinformatics"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105433_bib50","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.ab.2006.07.022","article-title":"Predicting protein structural class with pseudo-amino acid composition and support vector machine fusion network","volume":"357","author":"Chen","year":"2006","journal-title":"Anal. Biochem."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105433_bib51","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.jtbi.2009.11.016","article-title":"Using the concept of Chou's pseudo amino acid composition for risk type prediction of human papillomaviruses","volume":"263","author":"Esmaeili","year":"2010","journal-title":"J. Theor. Biol."},{"year":"2017","series-title":"A Unified Approach to Interpreting Model Predictions","author":"Lundberg","key":"10.1016\/j.compbiomed.2022.105433_bib52"},{"key":"10.1016\/j.compbiomed.2022.105433_bib53","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1016\/j.compag.2016.07.003","article-title":"Deep learning for plant identification using vein morphological patterns","volume":"127","author":"Grinblat","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compbiomed.2022.105433_bib54","doi-asserted-by":"crossref","DOI":"10.3389\/fgene.2019.00013","article-title":"DeepDriver: predicting cancer driver genes based on somatic mutations using deep convolutional neural networks","volume":"10","author":"Luo","year":"2019","journal-title":"Front. Genet."},{"year":"2014","series-title":"Adam: A Method for Stochastic Optimization","author":"Kingma","key":"10.1016\/j.compbiomed.2022.105433_bib55"},{"key":"10.1016\/j.compbiomed.2022.105433_bib56","unstructured":"S. Ioffe and C. Szegedy, \u201cBatch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift\u201d."},{"year":"2014","series-title":"Dropout: A Simple Way to Prevent Neural Networks from Overfitting","author":"Srivastava","key":"10.1016\/j.compbiomed.2022.105433_bib57"},{"author":"Abadi","key":"10.1016\/j.compbiomed.2022.105433_bib58"},{"year":"2011","series-title":"Scikit-learn: Machine Learning in Python Ga\u00ebl Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos PEDREGOSA, VAROQUAUX, GRAMFORT ET AL","author":"Pedregosa Fabianpedregosa","key":"10.1016\/j.compbiomed.2022.105433_bib59"},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105433_bib60","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1109\/MCSE.2007.55","article-title":"Matplotlib: a 2D graphics environment","volume":"9","author":"Hunter","year":"2007","journal-title":"Comput. Sci. Eng."},{"issue":"60","key":"10.1016\/j.compbiomed.2022.105433_bib61","doi-asserted-by":"crossref","first-page":"3021","DOI":"10.21105\/joss.03021","article-title":"seaborn: statistical data visualization","volume":"6","author":"Waskom","year":"2021","journal-title":"J. Open Source Softw."},{"year":"2015","series-title":"Collaborative Data Science","key":"10.1016\/j.compbiomed.2022.105433_bib62"},{"issue":"20","key":"10.1016\/j.compbiomed.2022.105433_bib63","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"\u2018Support-vector networks","volume":"297","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105433_bib64","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1080\/00031305.1992.10475879","article-title":"An introduction to kernel and nearest-neighbor nonparametric regression","volume":"46","author":"Altman","year":"1992","journal-title":"Am. Statistician"},{"key":"10.1016\/j.compbiomed.2022.105433_bib65","first-page":"785","article-title":"XGBoost: a scalable tree boosting system","volume":"vols. 13\u201317","author":"Chen","year":"2016"},{"year":"2021","series-title":"Data-Driven Diverse Logistic Regression Ensembles","author":"Christidis","key":"10.1016\/j.compbiomed.2022.105433_bib66"},{"key":"10.1016\/j.compbiomed.2022.105433_bib67","doi-asserted-by":"crossref","DOI":"10.1093\/bib\/bbab046","article-title":"PreDTIs: prediction of drug\u2013target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques","author":"Mahmud","year":"2021","journal-title":"Brie. Bioinform."},{"key":"10.1016\/j.compbiomed.2022.105433_bib68","doi-asserted-by":"crossref","DOI":"10.1016\/j.ab.2020.113978","article-title":"DeepACTION: a deep learning-based method for predicting novel drug-target interactions","volume":"610","author":"Hasan Mahmud","year":"2020","journal-title":"Anal. Biochem."},{"key":"10.1016\/j.compbiomed.2022.105433_bib69","doi-asserted-by":"crossref","DOI":"10.1016\/j.ab.2019.113507","article-title":"Prediction of drug-target interaction based on protein features using undersampling and feature selection techniques with boosting","volume":"589","author":"Mahmud","year":"2020","journal-title":"Anal. Biochem."},{"key":"10.1016\/j.compbiomed.2022.105433_bib70","series-title":"The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science","first-page":"559","article-title":"LIII. On lines and planes of closest fit to systems of points in space","volume":"2","author":"Pearson","year":"1901"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105433_bib71","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1198\/000313008X270448","article-title":"Univariate distribution relationships","volume":"62","author":"Leemis","year":"2008","journal-title":"Am. Statistician"},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105433_bib72","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1080\/10618600.2012.681250","article-title":"A sparse-group lasso","volume":"22","author":"Simon","year":"2013","journal-title":"J. Comput. Graph Stat."},{"issue":"12","key":"10.1016\/j.compbiomed.2022.105433_bib73","doi-asserted-by":"crossref","first-page":"3483","DOI":"10.1016\/j.patcog.2013.05.018","article-title":"Gene selection with guided regularized random forest","volume":"46","author":"Deng","year":"2013","journal-title":"Pattern Recogn."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105433_bib74","doi-asserted-by":"crossref","DOI":"10.1093\/bib\/bbab252","article-title":"Integrative machine learning framework for the identification of cell-specific enhancers from the human genome","volume":"22","author":"Basith","year":"2021","journal-title":"Briefings Bioinf."},{"key":"10.1016\/j.compbiomed.2022.105433_bib75","doi-asserted-by":"crossref","DOI":"10.1093\/bib\/bbab167","article-title":"NeuroPred-FRL: an interpretable prediction model for identifying neuropeptide using feature representation learning","author":"Hasan","year":"2021","journal-title":"Briefings Bioinf."},{"issue":"11","key":"10.1016\/j.compbiomed.2022.105433_bib76","doi-asserted-by":"crossref","first-page":"3350","DOI":"10.1093\/bioinformatics\/btaa160","article-title":"Improved and robust prediction of hemolytic peptide and its activity by fusing multiple feature representation","volume":"36","author":"Hasan","year":"2020","journal-title":"Bioinformatics"},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105433_bib77","doi-asserted-by":"crossref","first-page":"bbaa202","DOI":"10.1093\/bib\/bbaa202","article-title":"Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework","volume":"22","author":"Hasan","year":"2021","journal-title":"Briefings Bioinf."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105433_bib78","doi-asserted-by":"crossref","DOI":"10.1093\/bib\/bbab172","article-title":"StackIL6: a stacking ensemble model for improving the prediction of IL-6 inducing peptides","volume":"22","author":"Charoenkwan","year":"2021","journal-title":"Briefings Bioinf."},{"key":"10.1016\/j.compbiomed.2022.105433_bib79","doi-asserted-by":"crossref","first-page":"406","DOI":"10.1016\/j.omtn.2020.09.010","article-title":"Empirical comparison and analysis of web-based DNA N4-methylcytosine site prediction tools","volume":"22","author":"Manavalan","year":"2020","journal-title":"Mol. Ther. Nucleic Acids"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522002256?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522002256?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,21]],"date-time":"2024-09-21T06:42:25Z","timestamp":1726900945000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482522002256"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":79,"alternative-id":["S0010482522002256"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.105433","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2022,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"DeepDNAbP: A deep learning-based hybrid approach to improve the identification of deoxyribonucleic acid-binding proteins","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.105433","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"105433"}}