{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,17]],"date-time":"2025-04-17T21:26:15Z","timestamp":1744925175652},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,3,1]],"date-time":"2022-03-01T00:00:00Z","timestamp":1646092800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2022,3]]},"DOI":"10.1016\/j.compbiomed.2022.105211","type":"journal-article","created":{"date-parts":[[2022,1,4]],"date-time":"2022-01-04T16:23:10Z","timestamp":1641313390000},"page":"105211","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":20,"special_numbering":"C","title":["BI - Directional long short-term memory for automatic detection of sleep apnea events based on single channel EEG signal"],"prefix":"10.1016","volume":"142","author":[{"given":"Yao","family":"Wang","sequence":"first","affiliation":[]},{"given":"Zhuangwen","family":"Xiao","sequence":"additional","affiliation":[]},{"given":"Shuaiwen","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Weiming","family":"Li","sequence":"additional","affiliation":[]},{"given":"Jinhai","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0873-7229","authenticated-orcid":false,"given":"Xiaoyun","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.compbiomed.2022.105211_bib1","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1109\/TBME.2003.812203","article-title":"Automated processing of the single-lead electrocardiogram for the detection of obstructive sleep apnoea","volume":"50","author":"Chazal","year":"2003","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"12","key":"10.1016\/j.compbiomed.2022.105211_bib2","doi-asserted-by":"crossref","first-page":"2838","DOI":"10.1109\/TBME.2009.2029563","article-title":"Sleep apnea screening by autoregressive models from a single Ecg lead","volume":"56","author":"Mendez","year":"2009","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"5","key":"10.1016\/j.compbiomed.2022.105211_bib3","doi-asserted-by":"crossref","first-page":"597","DOI":"10.5664\/jcsm.2172","article-title":"Rules for scoring respiratory events in sleep: update of the 2007 Aasm manual for the scoring of sleep and associated events: deliberations of the sleep apnea definitions task force of the American Academy of Sleep Medicine","volume":"8","author":"Berry","year":"2012","journal-title":"J. Clin. Sleep Med."},{"key":"10.1016\/j.compbiomed.2022.105211_bib4","first-page":"9","article-title":"Guidelines for the diagnosis and treatment of obstructive sleep apnea hypopnea syndrome","volume":"35","year":"2011","journal-title":"Chin. J. Tubercul. Respir."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105211_bib5","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1109\/TBME.2016.2554138","article-title":"Apnea\u2013hypopnea index prediction using electrocardiogram acquired during the sleep-onset period","volume":"64","author":"Da W Su","year":"2017","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105211_bib6","doi-asserted-by":"crossref","first-page":"1134","DOI":"10.1378\/chest.123.4.1134","article-title":"Predicting sleep apnea and excessive day sleepiness in the severely obese - indicators for polysomnography","volume":"123","author":"Dixon","year":"2003","journal-title":"Chest"},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105211_bib7","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1109\/JBHI.2015.2405075","article-title":"Coupled hidden Markov model-based method for apnea Bradycardia detection","volume":"20","author":"Ghahjaverestan","year":"2016","journal-title":"IEEE J. Biomed. Health Inf."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105211_bib8","doi-asserted-by":"crossref","first-page":"618","DOI":"10.1164\/ajrccm\/148.3.618","article-title":"Sleep apnea and cardiac arrhythmias. Is there a relationship?","volume":"148","author":"F Lemons","year":"1993","journal-title":"Am. Rev. Respir. Dis."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105211_bib9","doi-asserted-by":"crossref","first-page":"1533","DOI":"10.1109\/JBHI.2016.2636778","article-title":"Sleep apnea detection based on thoracic and abdominal movement signals of wearable piezoelectric bands","volume":"21","author":"Lin","year":"2016","journal-title":"IEEE J. Biomed. Health Inf."},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105211_bib10","doi-asserted-by":"crossref","DOI":"10.1183\/13993003.01587-2017","article-title":"Predicting response to oxygen therapy in obstructive sleep apnoea patients using a 10-minute daytime test","volume":"51","author":"Wang","year":"2018","journal-title":"Eur. Respir. J."},{"issue":"5","key":"10.1016\/j.compbiomed.2022.105211_bib11","doi-asserted-by":"crossref","first-page":"667","DOI":"10.1093\/sleep\/22.5.667","article-title":"Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research","volume":"22","author":"Flemons","year":"1999","journal-title":"Sleep"},{"key":"10.1016\/j.compbiomed.2022.105211_bib12","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/j.compbiomed.2018.06.028","article-title":"Real-time apnea-hypopnea event detection during sleep by convolutional neural networks","volume":"100","author":"Choi","year":"2018","journal-title":"Comput. Biol. Med."},{"issue":"9","key":"10.1016\/j.compbiomed.2022.105211_bib13","doi-asserted-by":"crossref","first-page":"705","DOI":"10.1093\/sleep\/20.9.705","article-title":"Estimation of the clinically diagnosed proportion of sleep apnea syndrome in middle-aged men and women","volume":"20","author":"Young","year":"1997","journal-title":"Sleep"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105211_bib14","doi-asserted-by":"crossref","first-page":"285","DOI":"10.3233\/THC-1997-5403","article-title":"Polysomnography: a systematic review","volume":"5","author":"Bloch","year":"1997","journal-title":"Technol. Health Care"},{"issue":"7","key":"10.1016\/j.compbiomed.2022.105211_bib15","first-page":"1532","article-title":"An obstructive sleep apnea detection approach using a discriminative hidden Markov model from Ecg signals","volume":"63","author":"Zhang","year":"2015","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105211_bib16","doi-asserted-by":"crossref","first-page":"416","DOI":"10.1109\/TITB.2010.2087386","article-title":"Apnea Medassist: real-time sleep apnea monitor using single-lead Ecg","volume":"15","author":"Bsoul","year":"2010","journal-title":"IEEE Trans. Inf. Technol. Biomed."},{"key":"10.1016\/j.compbiomed.2022.105211_bib17","series-title":"Proceedings of the Tencon 2018-2018 Ieee Region 10 Conference","article-title":"Deep neural networks with weighted averaged overnight airflow features for sleep apnea-hypopnea severity classification","author":"Lakhan","year":"2018"},{"issue":"10","key":"10.1016\/j.compbiomed.2022.105211_bib18","doi-asserted-by":"crossref","first-page":"1047","DOI":"10.1088\/0967-3334\/27\/10\/010","article-title":"Automatic detection, segmentation and assessment of snoring from ambient acoustic data","volume":"27","author":"Duckitt","year":"2006","journal-title":"Physiol. Meas."},{"key":"10.1016\/j.compbiomed.2022.105211_bib19","first-page":"1","article-title":"Comparison of Sfs and mrmr for oximetry feature selection in obstructive sleep apnea detection","author":"Morgado-Dias","year":"2018","journal-title":"Neural Comput. Appl."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105211_bib20","doi-asserted-by":"crossref","first-page":"1011","DOI":"10.1109\/JBHI.2018.2842919","article-title":"Automatic detection of obstructive sleep apnea using wavelet transform and entropy-based features from single-lead Ecg signal","volume":"23","author":"Zarei Asl","year":"2018","journal-title":"IEEE J. Biomed. Health Inf."},{"issue":"8","key":"10.1016\/j.compbiomed.2022.105211_bib21","doi-asserted-by":"crossref","first-page":"812","DOI":"10.3390\/e21080812","article-title":"Obstructive sleep apnea recognition based on multi-bands spectral entropy analysis of short-time heart rate variability","volume":"21","author":"Song","year":"2019","journal-title":"Entropy"},{"key":"10.1016\/j.compbiomed.2022.105211_bib22","article-title":"Sleep stage classification using unsupervised feature learning","volume":"2012","author":"L\u00e4ngkvist Karlsson Loutfi","year":"2012","journal-title":"Adv. Artif. Neural Syst."},{"issue":"5","key":"10.1016\/j.compbiomed.2022.105211_bib23","doi-asserted-by":"crossref","first-page":"1587","DOI":"10.1007\/s10439-015-1444-y","article-title":"Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders","volume":"44","author":"Tsinalis Matthews","year":"2016","journal-title":"Ann. Biomed. Eng."},{"key":"10.1016\/j.compbiomed.2022.105211_bib24","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.bspc.2016.05.009","article-title":"Computer-aided obstructive sleep apnea detection using normal inverse Gaussian parameters and adaptive boosting","volume":"29","author":"Hassan","year":"2016","journal-title":"Biomed. Signal Process Control"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105211_bib25","doi-asserted-by":"crossref","first-page":"762","DOI":"10.1109\/TBCAS.2018.2824659","article-title":"Online obstructive sleep apnea detection on medical wearable sensors","volume":"12","author":"Surrel","year":"2018","journal-title":"IEEE Trans. Biomed Circuits Syst."},{"key":"10.1016\/j.compbiomed.2022.105211_bib26","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.cmpb.2019.05.002","article-title":"A Rr interval based automated apnea detection approach using residual network","volume":"176","author":"Wang","year":"2019","journal-title":"Comput. Methods Progr. Biomed."},{"issue":"8","key":"10.1016\/j.compbiomed.2022.105211_bib27","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"key":"10.1016\/j.compbiomed.2022.105211_bib28","series-title":"2016 Ieee First International Conference on Data Science in Cyberspace (Dsc)","first-page":"318","article-title":"Question similarity modeling with bidirectional long short-term memory neural network","author":"Chang","year":"2016"},{"issue":"10","key":"10.1016\/j.compbiomed.2022.105211_bib29","doi-asserted-by":"crossref","first-page":"2451","DOI":"10.1162\/089976600300015015","article-title":"Learning to forget: continual prediction with Lstm","volume":"12","author":"Gers","year":"2000","journal-title":"Neural Comput."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105211_bib30","doi-asserted-by":"crossref","first-page":"1124","DOI":"10.1109\/JIOT.2016.2561962","article-title":"Multicolumn bidirectional long short-term memory for mobile devices-based human activity recognition","volume":"3","author":"Tao Wen Hong","year":"2016","journal-title":"IEEE Internet Things J."},{"issue":"11","key":"10.1016\/j.compbiomed.2022.105211_bib31","doi-asserted-by":"crossref","first-page":"2673","DOI":"10.1109\/78.650093","article-title":"Bidirectional recurrent neural networks","volume":"45","author":"Schuster Paliwal","year":"1997","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.compbiomed.2022.105211_bib32","series-title":"Adam: a method for stochastic optimization","first-page":"273","author":"Kingma","year":"2014"},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105211_bib33","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1515\/mms-2017-0036","article-title":"Comparison of information on sleep apnoea contained in two symmetric Eeg recordings","volume":"26","author":"Prucnal","year":"2019","journal-title":"Metrol. Meas. Syst."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522000038?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522000038?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,2]],"date-time":"2024-01-02T18:01:13Z","timestamp":1704218473000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482522000038"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,3]]},"references-count":33,"alternative-id":["S0010482522000038"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.105211","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2022,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"BI - Directional long short-term memory for automatic detection of sleep apnea events based on single channel EEG signal","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.105211","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"simple-article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105211"}}