{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T14:40:12Z","timestamp":1726238412400},"reference-count":84,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2022,1]]},"DOI":"10.1016\/j.compbiomed.2021.105090","type":"journal-article","created":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T16:09:48Z","timestamp":1638374988000},"page":"105090","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Dual feature correlation guided multi-task learning for Alzheimer's disease prediction"],"prefix":"10.1016","volume":"140","author":[{"given":"Shanshan","family":"Tang","sequence":"first","affiliation":[]},{"given":"Peng","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Min","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Xiaoli","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Osmar","family":"Zaiane","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2021.105090_bib1","series-title":"Risk Reduction of Cognitive Decline and Dementia","article-title":"Risk reduction of cognitive decline and dementia: who guidelines","author":"Organization","year":"2019"},{"issue":"4","key":"10.1016\/j.compbiomed.2021.105090_bib2","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1016\/j.jalz.2017.12.006","article-title":"The cost of alzheimer's disease in China and re-estimation of costs worldwide","volume":"14","author":"Jia","year":"2018","journal-title":"Alzheimer's Dementia"},{"key":"10.1016\/j.compbiomed.2021.105090_bib3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/JTEHM.2020.2984601","article-title":"Multi-source transfer learning via ensemble approach for initial diagnosis of alzheimer's disease","volume":"8","author":"Yang","year":"2020","journal-title":"IEEE J. Transl. Eng. Health Med."},{"issue":"5","key":"10.1016\/j.compbiomed.2021.105090_bib4","doi-asserted-by":"crossref","first-page":"631","DOI":"10.1017\/S1355617701755105","article-title":"Preclinical prediction of ad using neuropsychological tests","volume":"7","author":"Albert","year":"2001","journal-title":"J. Int. Neuropsychol. Soc.: JINS"},{"issue":"11","key":"10.1016\/j.compbiomed.2021.105090_bib5","doi-asserted-by":"crossref","first-page":"1356","DOI":"10.1176\/ajp.141.11.1356","article-title":"A new rating scale for alzheimer's disease","volume":"141","author":"Rosen","year":"1984","journal-title":"Am. J. Psychiatr."},{"issue":"3","key":"10.1016\/j.compbiomed.2021.105090_bib6","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1016\/0022-3956(75)90026-6","article-title":"mini-mental state: a practical method for grading the cognitive state of patients for the clinician","volume":"12","author":"Folstein","year":"1975","journal-title":"J. Psychiatr. Res."},{"year":"1996","series-title":"Rey Auditory Verbal Learning Test: A Handbook","author":"Schmidt","key":"10.1016\/j.compbiomed.2021.105090_bib7"},{"issue":"2","key":"10.1016\/j.compbiomed.2021.105090_bib8","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1017\/S1355617711001688","article-title":"Quality, and not just quantity, of education accounts for differences in psychometric performance between african americans and white non-hispanics with alzheimer's disease","volume":"18","author":"Chin","year":"2012","journal-title":"J. Int. Neuropsychol. Soc."},{"issue":"16","key":"10.1016\/j.compbiomed.2021.105090_bib9","doi-asserted-by":"crossref","first-page":"1395","DOI":"10.1212\/WNL.0b013e3182166e96","article-title":"Alzheimer-signature mri biomarker predicts ad dementia in cognitively normal adults","volume":"76","author":"Dickerson","year":"2011","journal-title":"Neurology"},{"key":"10.1016\/j.compbiomed.2021.105090_bib10","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.nicl.2016.06.010","article-title":"Cortical thickness in relation to clinical symptom onset in preclinical ad","volume":"12","author":"Pettigrew","year":"2016","journal-title":"Neuroimage: Clin."},{"issue":"3","key":"10.1016\/j.compbiomed.2021.105090_bib11","doi-asserted-by":"crossref","first-page":"755","DOI":"10.3233\/JAD-2012-121408","article-title":"Entorhinal cortex thickness predicts cognitive decline in alzheimer's disease","volume":"33","author":"Velayudhan","year":"2013","journal-title":"J. Alzheim. Dis."},{"issue":"9","key":"10.1016\/j.compbiomed.2021.105090_bib12","doi-asserted-by":"crossref","first-page":"1705","DOI":"10.1111\/j.1532-5415.2011.03539.x","article-title":"Value of neuropsychological tests, neuroimaging, and biomarkers for diagnosing alzheimer's disease in younger and older age cohorts","volume":"59","author":"Schmand","year":"2011","journal-title":"J. Am. Geriatr. Soc."},{"issue":"8","key":"10.1016\/j.compbiomed.2021.105090_bib13","doi-asserted-by":"crossref","first-page":"1364","DOI":"10.1016\/j.neurobiolaging.2010.04.023","article-title":"Automated mri measures predict progression to alzheimer's disease","volume":"31","author":"Desikan","year":"2010","journal-title":"Neurobiol. Aging"},{"issue":"11","key":"10.1016\/j.compbiomed.2021.105090_bib14","doi-asserted-by":"crossref","first-page":"1342","DOI":"10.1016\/j.patrec.2010.03.004","article-title":"Projecting independent components of spect images for computer aided diagnosis of alzheimer's disease","volume":"31","author":"Ill\u00e1n","year":"2010","journal-title":"Pattern Recogn. Lett."},{"issue":"2","key":"10.1016\/j.compbiomed.2021.105090_bib15","doi-asserted-by":"crossref","first-page":"2376","DOI":"10.1016\/j.asoc.2010.08.019","article-title":"Computer aided diagnosis of alzheimer's disease using component based svm","volume":"11","author":"Ill\u00e1n","year":"2011","journal-title":"Appl. Soft Comput."},{"issue":"4","key":"10.1016\/j.compbiomed.2021.105090_bib16","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0093851","article-title":"Automatic roi selection in structural brain mri using som 3d projection","volume":"9","author":"Ortiz","year":"2014","journal-title":"PLoS One"},{"issue":"4","key":"10.1016\/j.compbiomed.2021.105090_bib17","doi-asserted-by":"crossref","first-page":"1519","DOI":"10.1016\/j.neuroimage.2009.12.092","article-title":"High-dimensional pattern regression using machine learning: from medical images to continuous clinical variables","volume":"50","author":"Wang","year":"2010","journal-title":"Neuroimage"},{"issue":"4","key":"10.1016\/j.compbiomed.2021.105090_bib18","doi-asserted-by":"crossref","first-page":"1832","DOI":"10.1016\/j.neuroimage.2007.11.003","article-title":"Mmse scores correlate with local ventricular enlargement in the spectrum from cognitively normal to alzheimer disease","volume":"39","author":"Ferrarini","year":"2008","journal-title":"Neuroimage"},{"issue":"4","key":"10.1016\/j.compbiomed.2021.105090_bib19","doi-asserted-by":"crossref","first-page":"1363","DOI":"10.1016\/j.neuroimage.2009.04.023","article-title":"Relating one-year cognitive change in mild cognitive impairment to baseline mri features","volume":"47","author":"Duchesne","year":"2009","journal-title":"Neuroimage"},{"key":"10.1016\/j.compbiomed.2021.105090_bib20","series-title":"Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"1034","article-title":"Feafiner: biomarker identification from medical data through feature generalization and selection","author":"Zhou","year":"2013"},{"issue":"1","key":"10.1016\/j.compbiomed.2021.105090_bib21","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","article-title":"Regression shrinkage and selection via the lasso","volume":"58","author":"Tibshirani","year":"1996","journal-title":"J. Roy. Stat. Soc. B"},{"issue":"1","key":"10.1016\/j.compbiomed.2021.105090_bib22","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1186\/1471-2377-12-46","article-title":"Sparse learning and stability selection for predicting mci to ad conversion using baseline adni data","volume":"12","author":"Ye","year":"2012","journal-title":"BMC Neurol."},{"issue":"4","key":"10.1016\/j.compbiomed.2021.105090_bib23","doi-asserted-by":"crossref","first-page":"1519","DOI":"10.1016\/j.neuroimage.2010.12.028","article-title":"Penalized least squares regression methods and applications to neuroimaging","volume":"55","author":"Bunea","year":"2011","journal-title":"Neuroimage"},{"key":"10.1016\/j.compbiomed.2021.105090_bib24","series-title":"Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"814","article-title":"A multi-task learning formulation for predicting disease progression","author":"Zhou","year":"2011"},{"key":"10.1016\/j.compbiomed.2021.105090_bib25","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.neuroimage.2013.03.073","article-title":"Modeling disease progression via multi-task learning","volume":"78","author":"Zhou","year":"2013","journal-title":"Neuroimage"},{"key":"10.1016\/j.compbiomed.2021.105090_bib26","series-title":"Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence","first-page":"339","article-title":"Multi-task feature learning via efficient l2, 1-norm minimization","author":"Liu","year":"2009"},{"issue":"2","key":"10.1016\/j.compbiomed.2021.105090_bib27","doi-asserted-by":"crossref","first-page":"895","DOI":"10.1016\/j.neuroimage.2011.09.069","article-title":"Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer's disease","volume":"59","author":"Zhang","year":"2012","journal-title":"Neuroimage"},{"key":"10.1016\/j.compbiomed.2021.105090_bib28","series-title":"2011 International Conference on Computer Vision","first-page":"557","article-title":"Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance","author":"Wang","year":"2011"},{"issue":"1","key":"10.1016\/j.compbiomed.2021.105090_bib29","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1145\/2408736.2408739","article-title":"Sparse methods for biomedical data","volume":"14","author":"Ye","year":"2012","journal-title":"ACM Sigkdd Explor. Newsl."},{"key":"10.1016\/j.compbiomed.2021.105090_bib30","doi-asserted-by":"crossref","first-page":"S185","DOI":"10.1016\/j.neurobiolaging.2014.07.045","article-title":"Cortical surface biomarkers for predicting cognitive outcomes using group l2, 1 norm","volume":"36","author":"Yan","year":"2015","journal-title":"Neurobiol. Aging"},{"key":"10.1016\/j.compbiomed.2021.105090_bib31","series-title":"International Conference on Brain Informatics","first-page":"202","article-title":"Group guided sparse group lasso multi-task learning for cognitive performance prediction of alzheimer's disease","author":"Liu","year":"2017"},{"key":"10.1016\/j.compbiomed.2021.105090_bib32","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.compmedimag.2017.11.001","article-title":"Modeling alzheimer's disease cognitive scores using multi-task sparse group lasso","volume":"66","author":"Liu","year":"2018","journal-title":"Comput. Med. Imag. Graph."},{"issue":"2","key":"10.1016\/j.compbiomed.2021.105090_bib33","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1212\/WNL.57.2.216","article-title":"Differing patterns of temporal atrophy in alzheimer's disease and semantic dementia","volume":"57","author":"Galton","year":"2001","journal-title":"Neurology"},{"key":"10.1016\/j.compbiomed.2021.105090_bib34","series-title":"Artificial Intelligence and Statistics","first-page":"208","article-title":"A two-graph guided multi-task lasso approach for eqtl mapping","author":"Chen","year":"2012"},{"key":"10.1016\/j.compbiomed.2021.105090_bib35","series-title":"IEEE Conference on Computer Vision and Pattern Recognition","first-page":"940","article-title":"Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer's disease","author":"Wan","year":"2012"},{"key":"10.1016\/j.compbiomed.2021.105090_bib36","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"264","article-title":"Temporally-constrained group sparse learning for longitudinal data analysis","author":"Zhang","year":"2012"},{"issue":"1","key":"10.1016\/j.compbiomed.2021.105090_bib37","first-page":"238","article-title":"Temporally constrained group sparse learning for longitudinal data analysis in alzheimer's disease","volume":"64","author":"Jie","year":"2016","journal-title":"IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng."},{"issue":"6","key":"10.1016\/j.compbiomed.2021.105090_bib38","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3230668","article-title":"Modeling alzheimer's disease progression with fused laplacian sparse group lasso","volume":"12","author":"Liu","year":"2018","journal-title":"ACM Trans. Knowl. Discov. Data"},{"key":"10.1016\/j.compbiomed.2021.105090_bib39","series-title":"Advances in Neural Information Processing Systems","first-page":"1277","article-title":"High-order multi-task feature learning to identify longitudinal phenotypic markers for alzheimer's disease progression prediction","author":"Wang","year":"2012"},{"key":"10.1016\/j.compbiomed.2021.105090_bib40","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.media.2019.01.007","article-title":"Multi-task exclusive relationship learning for alzheimer's disease progression prediction with longitudinal data","volume":"53","author":"Wang","year":"2019","journal-title":"Med. Image Anal."},{"issue":"7","key":"10.1016\/j.compbiomed.2021.105090_bib41","doi-asserted-by":"crossref","first-page":"1475","DOI":"10.1109\/TMI.2014.2314712","article-title":"Identifying the neuroanatomical basis of cognitive impairment in alzheimer's disease by correlation-and nonlinearity-aware sparse bayesian learning","volume":"33","author":"Wan","year":"2014","journal-title":"IEEE Trans. Med. Imag."},{"issue":"6","key":"10.1016\/j.compbiomed.2021.105090_bib42","doi-asserted-by":"crossref","first-page":"1845","DOI":"10.1109\/TMI.2019.2958943","article-title":"Joint multi-modal longitudinal regression and classification for alzheimer's disease prediction","volume":"39","author":"Brand","year":"2019","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.compbiomed.2021.105090_bib43","series-title":"Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"1335","article-title":"Mining brain region connectivity for alzheimer's disease study via sparse inverse covariance estimation","author":"Sun","year":"2009"},{"key":"10.1016\/j.compbiomed.2021.105090_bib44","series-title":"Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"1095","article-title":"Modeling disease progression via fused sparse group lasso","author":"Zhou","year":"2012"},{"key":"10.1016\/j.compbiomed.2021.105090_bib45","series-title":"Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"42","article-title":"Integrating low-rank and group-sparse structures for robust multi-task learning","author":"Chen","year":"2011"},{"issue":"2","key":"10.1016\/j.compbiomed.2021.105090_bib46","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1007\/s12021-018-9398-5","article-title":"Fused group lasso regularized multi-task feature learning and its application to the cognitive performance prediction of alzheimer's disease","volume":"17","author":"Liu","year":"2019","journal-title":"Neuroinformatics"},{"key":"10.1016\/j.compbiomed.2021.105090_bib47","series-title":"International Conference on Machine Learning","first-page":"352","article-title":"Multi-view clustering and feature learning via structured sparsity","author":"Wang","year":"2013"},{"issue":"1","key":"10.1016\/j.compbiomed.2021.105090_bib48","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1137\/080716542","article-title":"A fast iterative shrinkage-thresholding algorithm for linear inverse problems","volume":"2","author":"Beck","year":"2009","journal-title":"SIAM J. Imag. Sci."},{"issue":"9","key":"10.1016\/j.compbiomed.2021.105090_bib49","doi-asserted-by":"crossref","first-page":"2104","DOI":"10.1109\/TPAMI.2013.17","article-title":"Efficient methods for overlapping group lasso","volume":"35","author":"Yuan","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"3","key":"10.1016\/j.compbiomed.2021.105090_bib50","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1007\/s10994-007-5040-8","article-title":"Convex multi-task feature learning","volume":"73","author":"Argyriou","year":"2008","journal-title":"Mach. Learn."},{"issue":"4","key":"10.1016\/j.compbiomed.2021.105090_bib51","doi-asserted-by":"crossref","first-page":"1405","DOI":"10.1016\/j.neuroimage.2010.03.051","article-title":"Predicting clinical scores from magnetic resonance scans in alzheimer's disease","volume":"51","author":"Stonnington","year":"2010","journal-title":"Neuroimage"},{"key":"10.1016\/j.compbiomed.2021.105090_bib52","doi-asserted-by":"crossref","unstructured":"R. S. Desikan, F. S\u00e9gonne, B. Fischl, B. T. Quinn, B. C. Dickerson, D. Blacker, R. L. Buckner, A. M. Dale, R. P. Maguire, B. T. Hyman, et al., An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest, Neuroimage 31 (3) 968\u2013980..","DOI":"10.1016\/j.neuroimage.2006.01.021"},{"issue":"4","key":"10.1016\/j.compbiomed.2021.105090_bib53","doi-asserted-by":"crossref","first-page":"1181","DOI":"10.1016\/j.neuroimage.2010.07.020","article-title":"Highly accurate inverse consistent registration: a robust approach","volume":"53","author":"Reuter","year":"2010","journal-title":"Neuroimage"},{"issue":"3","key":"10.1016\/j.compbiomed.2021.105090_bib54","doi-asserted-by":"crossref","first-page":"1060","DOI":"10.1016\/j.neuroimage.2004.03.032","article-title":"A hybrid approach to the skull stripping problem in mri","volume":"22","author":"S\u00e9gonne","year":"2004","journal-title":"Neuroimage"},{"issue":"3","key":"10.1016\/j.compbiomed.2021.105090_bib55","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1016\/S0896-6273(02)00569-X","article-title":"Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain","volume":"33","author":"Fischl","year":"2002","journal-title":"Neuron"},{"key":"10.1016\/j.compbiomed.2021.105090_bib56","doi-asserted-by":"crossref","first-page":"S69","DOI":"10.1016\/j.neuroimage.2004.07.016","article-title":"Sequence-independent segmentation of magnetic resonance images","volume":"23","author":"Fischl","year":"2004","journal-title":"Neuroimage"},{"issue":"1","key":"10.1016\/j.compbiomed.2021.105090_bib57","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1109\/42.668698","article-title":"A nonparametric method for automatic correction of intensity nonuniformity in mri data","volume":"17","author":"Sled","year":"1998","journal-title":"IEEE Trans. Med. Imag."},{"issue":"1","key":"10.1016\/j.compbiomed.2021.105090_bib58","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1109\/42.906426","article-title":"Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex","volume":"20","author":"Fischl","year":"2001","journal-title":"IEEE Trans. Med. Imag."},{"issue":"4","key":"10.1016\/j.compbiomed.2021.105090_bib59","doi-asserted-by":"crossref","first-page":"518","DOI":"10.1109\/TMI.2006.887364","article-title":"Geometrically accurate topology-correction of cortical surfaces using nonseparating loops","volume":"26","author":"S\u00e9gonne","year":"2007","journal-title":"IEEE Trans. Med. Imag."},{"issue":"2","key":"10.1016\/j.compbiomed.2021.105090_bib60","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1006\/nimg.1998.0395","article-title":"Cortical surface-based analysis: I. segmentation and surface reconstruction","volume":"9","author":"Dale","year":"1999","journal-title":"Neuroimage"},{"issue":"2","key":"10.1016\/j.compbiomed.2021.105090_bib61","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1162\/jocn.1993.5.2.162","article-title":"Improved localizadon of cortical activity by combining eeg and meg with mri cortical surface reconstruction: a linear approach","volume":"5","author":"Dale","year":"1993","journal-title":"J. Cognit. Neurosci."},{"issue":"20","key":"10.1016\/j.compbiomed.2021.105090_bib62","doi-asserted-by":"crossref","first-page":"11050","DOI":"10.1073\/pnas.200033797","article-title":"Measuring the thickness of the human cerebral cortex from magnetic resonance images","volume":"97","author":"Fischl","year":"2000","journal-title":"Proc. Natl. Acad. Sci. Unit. States Am."},{"key":"10.1016\/j.compbiomed.2021.105090_bib63","series-title":"Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"895","article-title":"Robust multi-task feature learning","author":"Gong","year":"2012"},{"key":"10.1016\/j.compbiomed.2021.105090_bib64","series-title":"Proceedings of the 26th Annual International Conference on Machine Learning","first-page":"457","article-title":"An accelerated gradient method for trace norm minimization","author":"Ji","year":"2009"},{"key":"10.1016\/j.compbiomed.2021.105090_bib65","series-title":"2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)","first-page":"14","article-title":"Morphometric analysis of hippocampus and lateral ventricle reveals regional difference between cognitively stable and declining persons","author":"Zhang","year":"2016"},{"issue":"3","key":"10.1016\/j.compbiomed.2021.105090_bib66","first-page":"607","article-title":"Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification","volume":"63","author":"Zhu","year":"2015","journal-title":"IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng."},{"issue":"4","key":"10.1016\/j.compbiomed.2021.105090_bib67","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1007\/BF00690836","article-title":"On areas of transition between entorhinal allocortex and temporal isocortex in the human brain. normal morphology and lamina-specific pathology in alzheimer's disease","volume":"68","author":"Braak","year":"1985","journal-title":"Acta Neuropathol."},{"issue":"3","key":"10.1016\/j.compbiomed.2021.105090_bib68","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1504\/IJBET.2013.057266","article-title":"Analysis of ventricle regions in alzheimer's brain mr images using level set based methods","volume":"12","author":"Kayalvizhi","year":"2013","journal-title":"Int. J. Biomed. Eng. Technol."},{"issue":"1","key":"10.1016\/j.compbiomed.2021.105090_bib69","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1007\/s10916-015-0396-y","article-title":"A method to differentiate mild cognitive impairment and alzheimer in mr images using eigen value descriptors","volume":"40","author":"Anandh","year":"2016","journal-title":"J. Med. Syst."},{"issue":"24","key":"10.1016\/j.compbiomed.2021.105090_bib70","doi-asserted-by":"crossref","first-page":"9944","DOI":"10.1073\/pnas.1301119110","article-title":"Heightened emotional contagion in mild cognitive impairment and alzheimer's disease is associated with temporal lobe degeneration","volume":"110","author":"Sturm","year":"2013","journal-title":"Proc. Natl. Acad. Sci. Unit. States Am."},{"issue":"1","key":"10.1016\/j.compbiomed.2021.105090_bib71","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1002\/hipo.450010102","article-title":"Entorhinal cortex pathology in alzheimer's disease","volume":"1","author":"Van Hoesen","year":"1991","journal-title":"Hippocampus"},{"issue":"7","key":"10.1016\/j.compbiomed.2021.105090_bib72","doi-asserted-by":"crossref","DOI":"10.1016\/j.heliyon.2020.e04516","article-title":"Disconnection of the right superior parietal lobule from the precuneus is associated with memory impairment in oldest-old alzheimer's disease patients","volume":"6","author":"Prawiroharjo","year":"2020","journal-title":"Heliyon"},{"key":"10.1016\/j.compbiomed.2021.105090_bib73","doi-asserted-by":"crossref","first-page":"302","DOI":"10.1016\/j.neuroimage.2017.12.048","article-title":"Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal alzheimer's disease","volume":"169","author":"Koch","year":"2018","journal-title":"Neuroimage"},{"issue":"1","key":"10.1016\/j.compbiomed.2021.105090_bib74","doi-asserted-by":"crossref","first-page":"71","DOI":"10.3233\/JAD-131526","article-title":"Corpus callosum shape and size changes in early alzheimer's disease: a longitudinal mri study using the oasis brain database","volume":"39","author":"Bachman","year":"2014","journal-title":"J. Alzheim. Dis."},{"issue":"11","key":"10.1016\/j.compbiomed.2021.105090_bib75","doi-asserted-by":"crossref","first-page":"1613","DOI":"10.1016\/j.neurobiolaging.2005.09.035","article-title":"Regionally specific atrophy of the corpus callosum in ad, mci and cognitive complaints","volume":"27","author":"Wang","year":"2006","journal-title":"Neurobiol. Aging"},{"issue":"6","key":"10.1016\/j.compbiomed.2021.105090_bib76","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1038\/2245","article-title":"Maintaining internal representations: the role of the human superior parietal lobe","volume":"1","author":"Wolpert","year":"1998","journal-title":"Nat. Neurosci."},{"key":"10.1016\/j.compbiomed.2021.105090_bib77","series-title":"2010 IEEE International Symposium on Biomedical Imaging: from Nano to Macro","first-page":"852","article-title":"Joint estimation of multiple clinical variables of neurological diseases from imaging patterns","author":"Fan","year":"2010"},{"issue":"1","key":"10.1016\/j.compbiomed.2021.105090_bib78","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1007\/s11682-018-9834-z","article-title":"Longitudinal score prediction for alzheimer's disease based on ensemble correntropy and spatial\u2013temporal constraint","volume":"13","author":"Lei","year":"2019","journal-title":"Brain Imag. Behav."},{"issue":"1","key":"10.1016\/j.compbiomed.2021.105090_bib79","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1148\/radiol.2511080924","article-title":"Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment","volume":"251","author":"McEvoy","year":"2009","journal-title":"Radiology"},{"issue":"8","key":"10.1016\/j.compbiomed.2021.105090_bib80","doi-asserted-by":"crossref","first-page":"1188","DOI":"10.1212\/WNL.58.8.1188","article-title":"Mri measures of entorhinal cortex vs hippocampus in preclinical ad","volume":"58","author":"Killiany","year":"2002","journal-title":"Neurology"},{"issue":"11","key":"10.1016\/j.compbiomed.2021.105090_bib81","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1212\/01.wnl.0000256697.20968.d7","article-title":"Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of alzheimer disease","volume":"68","author":"Devanand","year":"2007","journal-title":"Neurology"},{"issue":"5","key":"10.1016\/j.compbiomed.2021.105090_bib82","doi-asserted-by":"crossref","first-page":"466","DOI":"10.1016\/j.jagp.2014.10.005","article-title":"Anxiety symptoms in amnestic mild cognitive impairment are associated with medial temporal atrophy and predict conversion to alzheimer disease","volume":"23","author":"Mah","year":"2015","journal-title":"Am. J. Geriatr. Psychiatr."},{"key":"10.1016\/j.compbiomed.2021.105090_bib83","first-page":"307","article-title":"Segmentation of ventricles in alzheimer mr images using anisotropic diffusion filtering and level set method","volume":"50","author":"Anandh","year":"2014","journal-title":"Biomed. Sci. Instrum."},{"key":"10.1016\/j.compbiomed.2021.105090_bib84","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1016\/j.jocn.2016.05.038","article-title":"Total intracranial and lateral ventricle volumes measurement in alzheimer's disease: a methodological study","volume":"34","author":"Ertekin","year":"2016","journal-title":"J. Clin. Neurosci."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482521008842?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482521008842?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T13:28:53Z","timestamp":1726234133000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482521008842"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1]]},"references-count":84,"alternative-id":["S0010482521008842"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2021.105090","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2022,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Dual feature correlation guided multi-task learning for Alzheimer's disease prediction","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2021.105090","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105090"}}