{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,13]],"date-time":"2024-08-13T16:53:06Z","timestamp":1723567986440},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100004663","name":"Ministry of Science and Technology, Taiwan","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004663","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2021,3]]},"DOI":"10.1016\/j.compbiomed.2020.104206","type":"journal-article","created":{"date-parts":[[2020,12,31]],"date-time":"2020-12-31T19:18:51Z","timestamp":1609442331000},"page":"104206","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":45,"special_numbering":"C","title":["Axillary lymph node metastasis status prediction of early-stage breast cancer using convolutional neural networks"],"prefix":"10.1016","volume":"130","author":[{"given":"Yan-Wei","family":"Lee","sequence":"first","affiliation":[]},{"given":"Chiun-Sheng","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Chung-Chih","family":"Shih","sequence":"additional","affiliation":[]},{"given":"Ruey-Feng","family":"Chang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.compbiomed.2020.104206_bib1","doi-asserted-by":"crossref","first-page":"7","DOI":"10.3322\/caac.21551","article-title":"Cancer statistics","volume":"69","author":"Siegel","year":"2019","journal-title":"CA A Cancer J. Clin."},{"issue":"6","key":"10.1016\/j.compbiomed.2020.104206_bib2","doi-asserted-by":"crossref","first-page":"439","DOI":"10.3322\/caac.21412","article-title":"Breast cancer statistics, 2017, racial disparity in mortality by state","volume":"67","author":"DeSantis","year":"2017","journal-title":"CA A Cancer J. Clin."},{"issue":"9","key":"10.1016\/j.compbiomed.2020.104206_bib3","doi-asserted-by":"crossref","first-page":"1551","DOI":"10.1002\/1097-0142(19831101)52:9<1551::AID-CNCR2820520902>3.0.CO;2-3","article-title":"Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update","volume":"52","author":"Fisher","year":"1983","journal-title":"Cancer"},{"issue":"42","key":"10.1016\/j.compbiomed.2020.104206_bib4","doi-asserted-by":"crossref","first-page":"4499","DOI":"10.1038\/onc.2011.602","article-title":"Interaction of tumor cells and lymphatic vessels in cancer progression","volume":"31","author":"Alitalo","year":"2012","journal-title":"Oncogene"},{"issue":"4","key":"10.1016\/j.compbiomed.2020.104206_bib5","doi-asserted-by":"crossref","first-page":"682","DOI":"10.1002\/1097-0142(19870215)59:4<682::AID-CNCR2820590403>3.0.CO;2-Z","article-title":"Distribution of axillary node metastases by level of invasion. An analysis of 539 cases","volume":"59","author":"Veronesi","year":"1987","journal-title":"Cancer"},{"issue":"2","key":"10.1016\/j.compbiomed.2020.104206_bib6","first-page":"127","article-title":"Extent of metastatic axillary involvement in 1446 cases of breast cancer","volume":"16","author":"Veronesi","year":"1990","journal-title":"Eur. J. Surg. Oncol.: the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology"},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104206_bib7","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1002\/1097-0142(19890101)63:1<181::AID-CNCR2820630129>3.0.CO;2-H","article-title":"Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases","volume":"63","author":"Carter","year":"1989","journal-title":"Cancer"},{"issue":"8","key":"10.1016\/j.compbiomed.2020.104206_bib8","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1038\/nrc1670","article-title":"Breast cancer metastasis: markers and models","volume":"5","author":"Weigelt","year":"2005","journal-title":"Nat. Rev. Canc."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104206_bib9","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1038\/bjc.1992.230","article-title":"Assessment of morbidity from complete axillary dissection","volume":"66","author":"Ivens","year":"1992","journal-title":"Br. J. Canc."},{"key":"10.1016\/j.compbiomed.2020.104206_bib10","doi-asserted-by":"crossref","first-page":"21196","DOI":"10.1038\/srep21196","article-title":"A nomogram to predict the probability of axillary lymph node metastasis in early breast cancer patients with positive axillary ultrasound","volume":"6","author":"Qiu","year":"2016","journal-title":"Sci. Rep."},{"issue":"6","key":"10.1016\/j.compbiomed.2020.104206_bib11","doi-asserted-by":"crossref","first-page":"709","DOI":"10.1038\/bjc.1984.112","article-title":"Breast cancer: relationship between the size of the primary tumour and the probability of metastatic dissemination","volume":"49","author":"Koscielny","year":"1984","journal-title":"Br. J. Canc."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104206_bib12","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1186\/1472-6947-12-54","article-title":"Prediction of axillary lymph node metastasis in primary breast cancer patients using a decision tree-based model","volume":"12","author":"Takada","year":"2012","journal-title":"BMC Med. Inf. Decis. Making"},{"key":"10.1016\/j.compbiomed.2020.104206_bib13","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.cmpb.2017.06.001","article-title":"Computer-aided prediction of axillary lymph node status in breast cancer using tumor surrounding tissue features in ultrasound images","volume":"146","author":"Moon","year":"2017","journal-title":"Comput. Methods Progr. Biomed."},{"key":"10.1016\/j.compbiomed.2020.104206_bib14","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.cmpb.2018.05.011","article-title":"Computer-aided prediction model for axillary lymph node metastasis in breast cancer using tumor morphological and textural features on ultrasound","volume":"162","author":"Moon","year":"2018","journal-title":"Comput. Methods Progr. Biomed."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104206_bib15","doi-asserted-by":"crossref","first-page":"2240","DOI":"10.1038\/s41598-019-38502-0","article-title":"Preoperative prediction of axillary lymph node metastasis in breast cancer using radiomics features of DCE-MRI","volume":"9","author":"Cui","year":"2019","journal-title":"Sci. Rep."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104206_bib16","doi-asserted-by":"crossref","first-page":"4429","DOI":"10.1038\/s41598-019-40831-z","article-title":"Preoperative prediction of axillary lymph node metastasis in breast cancer using mammography-based radiomics method","volume":"9","author":"Yang","year":"2019","journal-title":"Sci. Rep."},{"issue":"4","key":"10.1016\/j.compbiomed.2020.104206_bib17","doi-asserted-by":"crossref","first-page":"945","DOI":"10.1109\/TMI.2018.2875868","article-title":"Path R-CNN for prostate cancer diagnosis and gleason grading of histological images","volume":"38","author":"Li","year":"2018","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.compbiomed.2020.104206_bib18","first-page":"3","article-title":"Unet++: a nested u-net architecture for medical image segmentation","author":"Zhou","year":"2018","journal-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support"},{"key":"10.1016\/j.compbiomed.2020.104206_bib19","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/j.media.2018.12.006","article-title":"Automated diagnosis of breast ultrasonography images using deep neural networks","volume":"52","author":"Qi","year":"2019","journal-title":"Med. Image Anal."},{"issue":"10","key":"10.1016\/j.compbiomed.2020.104206_bib20","doi-asserted-by":"crossref","first-page":"1245","DOI":"10.1001\/jama.293.10.1245","article-title":"Screening for breast cancer","volume":"293","author":"Elmore","year":"2005","journal-title":"Jama"},{"key":"10.1016\/j.compbiomed.2020.104206_bib21","unstructured":"K. He, G. Gkioxari, P. Doll\u00e1r, and R. Girshick, \"Mask R-Cnn.\" pp. 2961-2969."},{"issue":"2","key":"10.1016\/j.compbiomed.2020.104206_bib22","article-title":"Combination of peri-and intratumoral radiomic features on baseline CT scans predicts response to chemotherapy in lung adenocarcinoma","volume":"1","author":"Khorrami","year":"2019","journal-title":"Radiology: Artif. Intell."},{"issue":"11","key":"10.1016\/j.compbiomed.2020.104206_bib23","doi-asserted-by":"crossref","first-page":"1423","DOI":"10.1038\/nm.3394","article-title":"Microenvironmental regulation of tumor progression and metastasis","volume":"19","author":"Quail","year":"2013","journal-title":"Nat. Med."},{"key":"10.1016\/j.compbiomed.2020.104206_bib24","article-title":"Regulation of tumor growth and metastasis: the role of tumor microenvironment","volume":"7","author":"Goubran","year":"2014","journal-title":"Canc. Growth Metastasis"},{"issue":"3","key":"10.1016\/j.compbiomed.2020.104206_bib25","doi-asserted-by":"crossref","first-page":"783","DOI":"10.1148\/radiol.2018180910","article-title":"Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas","volume":"290","author":"Beig","year":"2018","journal-title":"Radiology"},{"issue":"21","key":"10.1016\/j.compbiomed.2020.104206_bib26","doi-asserted-by":"crossref","first-page":"e104","DOI":"10.1158\/0008-5472.CAN-17-0339","article-title":"Computational radiomics system to decode the radiographic phenotype","volume":"77","author":"Van Griethuysen","year":"2017","journal-title":"Canc. Res."},{"key":"10.1016\/j.compbiomed.2020.104206_bib27","series-title":"Applied Logistic Regression","author":"Hosmer","year":"2013"},{"issue":"4","key":"10.1016\/j.compbiomed.2020.104206_bib28","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1109\/5254.708428","article-title":"Support vector machines","volume":"13","author":"Hearst","year":"1998","journal-title":"IEEE Intell. Syst. Their Appl."},{"key":"10.1016\/j.compbiomed.2020.104206_bib29","unstructured":"T. Chen, and C. Guestrin, \"Xgboost: A Scalable Tree Boosting System.\" pp. 785-794."},{"key":"10.1016\/j.compbiomed.2020.104206_bib30","series-title":"Keras","author":"Chollet","year":"2015"},{"key":"10.1016\/j.compbiomed.2020.104206_bib31","first-page":"2825","article-title":"Scikit-learn: machine learning in Python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J. Mach. Learn. Res."},{"issue":"3","key":"10.1016\/j.compbiomed.2020.104206_bib32","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1109\/TPAMI.2009.187","article-title":"Sensitivity analysis of k-fold cross validation in prediction error estimation","volume":"32","author":"Rodriguez","year":"2009","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compbiomed.2020.104206_bib33","unstructured":"M. T. Ribeiro, S. Singh, and C. Guestrin, \"\" Why should i trust you?\" Explaining the predictions of any classifier.\" pp. 1135-1144."},{"key":"10.1016\/j.compbiomed.2020.104206_bib34","unstructured":"B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, \"Learning Deep Features for Discriminative Localization.\" pp. 2921-2929."},{"key":"10.1016\/j.compbiomed.2020.104206_bib35","unstructured":"S. M. Lundberg, and S.-I. Lee, \"A Unified Approach to Interpreting Model Predictions.\" pp. 4765-4774."},{"key":"10.1016\/j.compbiomed.2020.104206_bib36","series-title":"Interpretable Machine Learning","author":"Molnar","year":"2019"},{"key":"10.1016\/j.compbiomed.2020.104206_bib37","series-title":"\"The (Un) Reliability of Saliency Methods,\" Explainable AI: Interpreting, Explaining and Visualizing Deep Learning","first-page":"267","author":"Kindermans","year":"2019"},{"issue":"13","key":"10.1016\/j.compbiomed.2020.104206_bib38","doi-asserted-by":"crossref","first-page":"2969","DOI":"10.3390\/s19132969","article-title":"Local interpretable model-agnostic explanations for classification of lymph node metastases","volume":"19","author":"Palatnik de Sousa","year":"2019","journal-title":"Sensors"},{"issue":"17","key":"10.1016\/j.compbiomed.2020.104206_bib39","doi-asserted-by":"crossref","first-page":"1784","DOI":"10.1056\/NEJMoa050518","article-title":"Effect of screening and adjuvant therapy on mortality from breast cancer","volume":"353","author":"Berry","year":"2005","journal-title":"N. Engl. J. Med."},{"issue":"8433","key":"10.1016\/j.compbiomed.2020.104206_bib40","doi-asserted-by":"crossref","first-page":"829","DOI":"10.1016\/S0140-6736(85)92204-4","article-title":"Reduction in mortality from breast cancer after mass screening with mammography: randomised trial from the breast cancer screening working group of the Swedish national board of health and welfare","volume":"325","author":"Tabar","year":"1985","journal-title":"Lancet"},{"issue":"20","key":"10.1016\/j.compbiomed.2020.104206_bib41","doi-asserted-by":"crossref","first-page":"3507","DOI":"10.1242\/jcs.072900","article-title":"\u201cStromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial\u2013mesenchymal transition-like state in breast cancer cells in vitro","volume":"123","author":"Gao","year":"2010","journal-title":"J. Cell Sci."},{"key":"10.1016\/j.compbiomed.2020.104206_bib42","doi-asserted-by":"crossref","first-page":"40364","DOI":"10.1038\/srep40364","article-title":"Intratumoral and peritumoral lymphatic vessel density both correlate with lymph node metastasis in breast cancer","volume":"7","author":"Zhang","year":"2017","journal-title":"Sci. Rep."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104206_bib43","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1186\/s13058-017-0846-1","article-title":"Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI","volume":"19","author":"Braman","year":"2017","journal-title":"Breast Canc. Res."},{"key":"10.1016\/j.compbiomed.2020.104206_bib44","doi-asserted-by":"crossref","DOI":"10.1155\/2019\/6509357","article-title":"A technical review of convolutional neural network-based mammographic breast cancer diagnosis","volume":"vol. 2019","author":"Zou","year":"2019","journal-title":"Computational and mathematical methods in medicine"},{"issue":"7553","key":"10.1016\/j.compbiomed.2020.104206_bib45","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"\u201cDeep learning,\u201d","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"issue":"1","key":"10.1016\/j.compbiomed.2020.104206_bib46","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1148\/radiol.2019190372","article-title":"Lymph node metastasis prediction from primary breast cancer US images using deep learning","volume":"294","author":"Zhou","year":"2020","journal-title":"Radiology"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482520305370?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482520305370?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,24]],"date-time":"2024-01-24T08:44:28Z","timestamp":1706085868000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482520305370"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":46,"alternative-id":["S0010482520305370"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2020.104206","relation":{},"ISSN":["0010-4825"],"issn-type":[{"value":"0010-4825","type":"print"}],"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Axillary lymph node metastasis status prediction of early-stage breast cancer using convolutional neural networks","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2020.104206","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104206"}}