{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:12:36Z","timestamp":1740111156641,"version":"3.37.3"},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,7,1]],"date-time":"2020-07-01T00:00:00Z","timestamp":1593561600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100007601","name":"European Union\u2019s Horizon 2020 research and innovation programme","doi-asserted-by":"publisher","award":["690238"],"id":[{"id":"10.13039\/501100007601","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2020,7]]},"DOI":"10.1016\/j.compbiomed.2020.103842","type":"journal-article","created":{"date-parts":[[2020,6,3]],"date-time":"2020-06-03T15:10:49Z","timestamp":1591197049000},"page":"103842","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":19,"special_numbering":"C","title":["Breast density classification in mammograms: An investigation of encoding techniques in binary-based local patterns"],"prefix":"10.1016","volume":"122","author":[{"given":"Andrik","family":"Rampun","sequence":"first","affiliation":[]},{"given":"Philip J.","family":"Morrow","sequence":"additional","affiliation":[]},{"given":"Bryan W.","family":"Scotney","sequence":"additional","affiliation":[]},{"given":"Hui","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2018","series-title":"Breast Cancer facts and figures 2017\/2018","author":"American Cancer Society","key":"10.1016\/j.compbiomed.2020.103842_b1"},{"key":"10.1016\/j.compbiomed.2020.103842_b2","doi-asserted-by":"crossref","first-page":"439","DOI":"10.3322\/caac.21412","article-title":"Breast cancer statistics, 2017, racial disparity in mortality by state","volume":"67","author":"DeSantis","year":"2017","journal-title":"CA Cancer J. Clin."},{"year":"2018","series-title":"Breast cancer care. Facts and statistics 2018","author":"Breast Cancer, UK","key":"10.1016\/j.compbiomed.2020.103842_b3"},{"year":"2018","series-title":"Breast cancer symptoms","author":"Breast Cancer, UK","key":"10.1016\/j.compbiomed.2020.103842_b4"},{"year":"2016","series-title":"U.S. breast cancer statistics","author":"Breast Cancer","key":"10.1016\/j.compbiomed.2020.103842_b5"},{"year":"2018","series-title":"Dense breast","author":"Breastcancer.org","key":"10.1016\/j.compbiomed.2020.103842_b6"},{"key":"10.1016\/j.compbiomed.2020.103842_b7","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.media.2017.07.005","article-title":"A survey on deep learning in medical image analysis","volume":"42","author":"Litjens","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2020.103842_b8","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.media.2018.03.006","article-title":"Deep learning in mammography and breast histology, an overview and future trends","volume":"47","author":"Hamidinekoo","year":"2018","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2020.103842_b9","doi-asserted-by":"crossref","unstructured":"A. Rampun, B.W. Scotney, P.J. Morrow, H. Wang, Breast mass classification in mammograms using ensemble convolutional neural networks, in: 2018 IEEE 20th International Conference on E-Health Networking, Applications and Services (Healthcom), 2018, pp. 1\u20136.","DOI":"10.1109\/HealthCom.2018.8531154"},{"key":"10.1016\/j.compbiomed.2020.103842_b10","series-title":"Pattern Recognition","first-page":"373","article-title":"Automated 2d fetal brain segmentation of MR images using a deep U-net","author":"Rampun","year":"2020"},{"key":"10.1016\/j.compbiomed.2020.103842_b11","doi-asserted-by":"crossref","first-page":"670","DOI":"10.1093\/jnci\/87.9.670","article-title":"Quantitative classification of mammographic densities and breast cancer risk: Results from the Canadian national breast screening study","volume":"87","author":"Boyd","year":"1995","journal-title":"J. Natl. Cancer Inst."},{"year":"2015","series-title":"The mammographic image analysis society digital mammogram database","author":"Suckling","key":"10.1016\/j.compbiomed.2020.103842_b12"},{"issue":"1","key":"10.1016\/j.compbiomed.2020.103842_b13","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1109\/TITB.2007.903514","article-title":"A novel breast tissue density classification methodology","volume":"12","author":"Oliver","year":"2008","journal-title":"IEEE Trans. Inf. Technol. Biomed."},{"key":"10.1016\/j.compbiomed.2020.103842_b14","series-title":"Proc. Int. Workshop on Digital Mammography","first-page":"177","article-title":"Classification of mammographic breast density using a combined classifier paradigm","author":"Bovis","year":"2002"},{"issue":"4","key":"10.1016\/j.compbiomed.2020.103842_b15","doi-asserted-by":"crossref","first-page":"362","DOI":"10.7305\/automatika.53-4.281","article-title":"Breast density classification using multiple feature selection","volume":"53","author":"Mu\u0161tra","year":"2012","journal-title":"Automatika"},{"issue":"2","key":"10.1016\/j.compbiomed.2020.103842_b16","doi-asserted-by":"crossref","first-page":"225","DOI":"10.3233\/IDA-2010-0418","article-title":"Fuzzy-rough approaches for mammographic risk analysis","volume":"14","author":"Parthal\u00e1in","year":"2010","journal-title":"Intell. Data Anal."},{"key":"10.1016\/j.compbiomed.2020.103842_b17","doi-asserted-by":"crossref","unstructured":"D. Raba, J. Mart\u00ed, R. Mart\u00ed, M. Peracaula, Breast mammography asymmetry estimation based on fractal and texture analysis, in: Proc. Computed Aided Radiology and Surgery, Berlin, Germany, vol. 1398, 2005.","DOI":"10.1016\/j.ics.2005.03.124"},{"issue":"7","key":"10.1016\/j.compbiomed.2020.103842_b18","doi-asserted-by":"crossref","first-page":"863","DOI":"10.1016\/j.acra.2005.03.069","article-title":"Computerized texture analysis of mammographic parenchymal patterns of digitized mammograms","volume":"12","author":"Li","year":"2005","journal-title":"Acad. Radiol."},{"key":"10.1016\/j.compbiomed.2020.103842_b19","doi-asserted-by":"crossref","unstructured":"A. Bosch, X. Munoz, A. Oliver, J. Mart\u00ed, Modeling and classifying breast tissue density in mammograms, in: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR, vol. 2, 2006, pp. 1552\u20131558.","DOI":"10.1109\/CVPR.2006.188"},{"key":"10.1016\/j.compbiomed.2020.103842_b20","unstructured":"Z. Chen, E. Denton, R. Zwiggelaar, Local feature based mammographic tissue pattern modelling and breast density classification, in: Proc. 4th International Conference on Biomedical Engineering and Informatics, BMEI, vol. 1, pp. 351\u2013355."},{"key":"10.1016\/j.compbiomed.2020.103842_b21","unstructured":"S. Petroudi, T. Kadir, M. Brady, Automatic classification of mammographic parenchymal patterns: A statistical approach, in: Proc. IEEE Conference on Engineering in Medicine and Biology Society, vol. 1, 2003, pp. 798\u2013801."},{"key":"10.1016\/j.compbiomed.2020.103842_b22","series-title":"Proc. Image Analysis and Recognition","first-page":"463","article-title":"Breast density classification using local ternary patterns in mammograms","author":"Rampun","year":"2017"},{"key":"10.1016\/j.compbiomed.2020.103842_b23","doi-asserted-by":"crossref","first-page":"14","DOI":"10.3390\/jimaging4010014","article-title":"Breast density classification using local quinary patterns with various neighbourhood topologies","volume":"4","author":"Rampun","year":"2018","journal-title":"J. Imaging"},{"key":"10.1016\/j.compbiomed.2020.103842_b24","unstructured":"M. George, A. Rampun, E. Denton, R. Zwiggelaar, Mammographic ellipse modelling towards birads density classification, in: Proc. International Workshop on Breast Imaging (IWDM) 2016: Breast Imaging, 2016, pp. 423\u2013430."},{"key":"10.1016\/j.compbiomed.2020.103842_b25","doi-asserted-by":"crossref","first-page":"24","DOI":"10.3390\/jimaging5020024","article-title":"Comparative study on local binary patterns for mammographic density and risk scoring","volume":"5","author":"George","year":"2019","journal-title":"J Imaging"},{"key":"10.1016\/j.compbiomed.2020.103842_b26","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.media.2016.07.007","article-title":"Large scale deep learning for computer aided detection of mammographic lesions","volume":"35","author":"Kooi","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2020.103842_b27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.media.2019.06.007","article-title":"Breast pectoral muscle segmentation in mammograms using a modified holistically-nested edge detection network","volume":"57","author":"Rampun","year":"2019","journal-title":"Med. Image Anal."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.103842_b28","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1002\/mp.12683","article-title":"A deep learning method for classifying mammographic breast density categories","volume":"45","author":"Mohamed","year":"2017","journal-title":"Med. Phys."},{"issue":"2","key":"10.1016\/j.compbiomed.2020.103842_b29","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1088\/1361-6560\/aa9f87","article-title":"Computer-aided assessment of breast density: comparison of supervised deep learning and feature-based statistical learning","volume":"63","author":"Li","year":"2018","journal-title":"Phys. Med. Biol."},{"issue":"5","key":"10.1016\/j.compbiomed.2020.103842_b30","doi-asserted-by":"crossref","first-page":"1322","DOI":"10.1109\/TMI.2016.2532122","article-title":"Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring","volume":"35","author":"Kallenberg","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"3","key":"10.1016\/j.compbiomed.2020.103842_b31","doi-asserted-by":"crossref","first-page":"1178","DOI":"10.1002\/mp.12763","article-title":"Automated mammographic breast density estimation using a fully convolutional network","volume":"45","author":"Lee","year":"2018","journal-title":"Med. Phys."},{"key":"10.1016\/j.compbiomed.2020.103842_b32","doi-asserted-by":"crossref","first-page":"4903","DOI":"10.1118\/1.4736530","article-title":"Estimation of breast percent density in raw and processed full field digital mammography images via adaptive fuzzy c-means clustering and support vector machine segmentation","volume":"39","author":"Keller","year":"2012","journal-title":"Med. Phys."},{"issue":"2","key":"10.1016\/j.compbiomed.2020.103842_b33","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1016\/j.acra.2011.09.014","article-title":"INbreast: toward a full-field digital mammographic database","volume":"19","author":"Moreira","year":"2011","journal-title":"Acad. Radiol."},{"key":"10.1016\/j.compbiomed.2020.103842_b34","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.artmed.2017.06.001","article-title":"Fully automated breast boundary and pectoral muscle segmentation in mammograms","volume":"79","author":"Rampun","year":"2017","journal-title":"Artif. Intell. Med."},{"issue":"7","key":"10.1016\/j.compbiomed.2020.103842_b35","doi-asserted-by":"crossref","first-page":"971","DOI":"10.1109\/TPAMI.2002.1017623","article-title":"Multiresolution gray-scale and rotation invariant texture classification with local binary patterns","volume":"24","author":"Ojala","year":"2002","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compbiomed.2020.103842_b36","doi-asserted-by":"crossref","first-page":"1635","DOI":"10.1109\/TIP.2010.2042645","article-title":"Enhanced local texture feature sets for face recognition under difficult lighting conditions","volume":"19","author":"Tan","year":"2010","journal-title":"IEEE Trans. Image Process."},{"issue":"2","key":"10.1016\/j.compbiomed.2020.103842_b37","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.artmed.2010.02.006","article-title":"Local binary patterns variants as texture descriptors for medical image analysis","volume":"49","author":"Nanni","year":"2010","journal-title":"Artif. Intell. Med."},{"issue":"2","key":"10.1016\/j.compbiomed.2020.103842_b38","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.imavis.2012.01.001","article-title":"Extended local binary patterns for texture classification","volume":"30","author":"Liu","year":"2012","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.compbiomed.2020.103842_b39","series-title":"Proc. Computer Vision\u2014ACCV 2007","first-page":"672","article-title":"Face recognition by using enlongated local binary patterns with average maximum distance gradient magnitude","volume":"vol. 4844","author":"Liao","year":"2007"},{"issue":"3","key":"10.1016\/j.compbiomed.2020.103842_b40","doi-asserted-by":"crossref","first-page":"1368","DOI":"10.1109\/TIP.2016.2522378","article-title":"Median robust extended local binary pattern for texture classification","volume":"25","author":"Liu","year":"2016","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compbiomed.2020.103842_b41","doi-asserted-by":"crossref","unstructured":"J. Yang, S. Wang, Z. Lei, Y. Zhao, S.Z. Li, Spatio-temporal LBP based moving object segmentation in compressed domain, in: Proc. IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance, 2012, pp. 252\u2013257.","DOI":"10.1109\/AVSS.2012.68"},{"issue":"6","key":"10.1016\/j.compbiomed.2020.103842_b42","doi-asserted-by":"crossref","first-page":"1657","DOI":"10.1109\/TIP.2010.2044957","article-title":"A completed modeling of local binary pattern operator for texture classification","volume":"19","author":"Guo","year":"2010","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compbiomed.2020.103842_b43","doi-asserted-by":"crossref","unstructured":"A. Rampun, B.W. Scotney, P.J. Morrow, H. Wang, Breast density classification using local septenary patterns: A multi-resolution and multi-topology approach, in: 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems, CBMS, 2019, pp. 646\u2013651.","DOI":"10.1109\/CBMS.2019.00133"},{"key":"10.1016\/j.compbiomed.2020.103842_b44","series-title":"Medical Image Understanding and Analysis","first-page":"365","article-title":"Breast density classification using multiresolution local quinary patterns in mammograms","author":"Rampun","year":"2017"},{"key":"10.1016\/j.compbiomed.2020.103842_b45","series-title":"Innovation in Medicine and Healthcare 2017","article-title":"A quantitative study of local ternary patterns for risk assessment in mammography","author":"Rampun","year":"2018"},{"issue":"2012","key":"10.1016\/j.compbiomed.2020.103842_b46","doi-asserted-by":"crossref","first-page":"3834","DOI":"10.1016\/j.patcog.2012.04.003","article-title":"Discriminative features for feature description","volume":"45","author":"Gio","year":"2012","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.compbiomed.2020.103842_b47","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1145\/1656274.1656278","article-title":"The weka data mining software: an update","volume":"11","author":"Hall","year":"2009","journal-title":"ACM SIGKDD Explor. Newslett."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S001048252030202X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S001048252030202X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T22:01:43Z","timestamp":1722981703000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S001048252030202X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,7]]},"references-count":47,"alternative-id":["S001048252030202X"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2020.103842","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2020,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Breast density classification in mammograms: An investigation of encoding techniques in binary-based local patterns","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2020.103842","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"103842"}}