{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T11:51:25Z","timestamp":1726055485525},"reference-count":63,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,8,1]],"date-time":"2019-08-01T00:00:00Z","timestamp":1564617600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100000864","name":"Michael J. Fox Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000864","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000864","name":"Michael J. Fox Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100000864","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000038","name":"Natural Sciences and Engineering Research Council of Canada","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000038","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2019,8]]},"DOI":"10.1016\/j.compbiomed.2019.103347","type":"journal-article","created":{"date-parts":[[2019,6,28]],"date-time":"2019-06-28T08:46:44Z","timestamp":1561711604000},"page":"103347","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":40,"special_numbering":"C","title":["Optimized machine learning methods for prediction of cognitive outcome in Parkinson's disease"],"prefix":"10.1016","volume":"111","author":[{"given":"Mohammad R.","family":"Salmanpour","sequence":"first","affiliation":[]},{"given":"Mojtaba","family":"Shamsaei","sequence":"additional","affiliation":[]},{"given":"Abdollah","family":"Saberi","sequence":"additional","affiliation":[]},{"given":"Saeed","family":"Setayeshi","sequence":"additional","affiliation":[]},{"given":"Ivan S.","family":"Klyuzhin","sequence":"additional","affiliation":[]},{"given":"Vesna","family":"Sossi","sequence":"additional","affiliation":[]},{"given":"Arman","family":"Rahmim","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2019.103347_bib1","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1002\/ana.21472","article-title":"Nonmotor manifestations of Parkinson's disease","volume":"64","author":"Simuni","year":"2008","journal-title":"Ann. Neurol."},{"key":"10.1016\/j.compbiomed.2019.103347_bib2","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1016\/S1353-8020(09)70770-9","article-title":"Non-motor extranigral signs and symptoms in Parkinson's disease","volume":"3","author":"Wolter","year":"2009","journal-title":"Park. Relat. Disord."},{"key":"10.1016\/j.compbiomed.2019.103347_bib3","doi-asserted-by":"crossref","first-page":"89_92","DOI":"10.1016\/j.jns.2009.08.022","article-title":"Non-motor fluctuations in Parkinson's disease: clinical spectrum and classification","volume":"289","author":"Bayulkem","year":"2010","journal-title":"J. Neurol. Sci."},{"issue":"2","key":"10.1016\/j.compbiomed.2019.103347_bib4","first-page":"275","article-title":"Polymorphisms of DRD2 and DRD3 genes and Parkinson's disease: a meta-analysis","volume":"2","author":"Dai","year":"2014","journal-title":"Biomedica"},{"issue":"5","key":"10.1016\/j.compbiomed.2019.103347_bib5","first-page":"735","article-title":"The second brain and Parkinson's disease","volume":"30","author":"Lebouvier","year":"2009","journal-title":"EGN"},{"key":"10.1016\/j.compbiomed.2019.103347_bib6","doi-asserted-by":"crossref","first-page":"519e24","DOI":"10.1002\/gps.2374","article-title":"Side of motor symptom onset and pain complaints in Parkinson's disease","volume":"25","author":"McNamara","year":"2010","journal-title":"Int. J. Geriatr. Psychiatry"},{"issue":"221","key":"10.1016\/j.compbiomed.2019.103347_bib7","doi-asserted-by":"crossref","first-page":"564","DOI":"10.1016\/j.bbr.2009.12.048","article-title":"The cholinergic system and Parkinson disease","volume":"2","author":"Bohnen","year":"2011","journal-title":"Behav. Brain Res."},{"issue":"1","key":"10.1016\/j.compbiomed.2019.103347_bib8","first-page":"53","article-title":"NON-MOTOR SYMPTOMS OF PARKINSON\u2019S DISEASE","volume":"2","author":"GabrielHou","year":"2007","journal-title":"Int. J. Gerontol."},{"issue":"4","key":"10.1016\/j.compbiomed.2019.103347_bib9","doi-asserted-by":"crossref","first-page":"344","DOI":"10.1590\/s1980-5764-2016dn1004015","article-title":"Comparison of the use of screening tools evaluating cognitive impairment in patients with Parkinson's disease","volume":"10","author":"Ferreira Camargo","year":"2016","journal-title":"Dement Neuropsychol"},{"key":"10.1016\/j.compbiomed.2019.103347_bib10","series-title":"Parkinson Progression Marker Initiative","year":"2011"},{"issue":"8","key":"10.1016\/j.compbiomed.2019.103347_bib11","first-page":"886","article-title":"Prediction of outcome of physiotherapy in advanced Parkinson's disease","volume":"16","author":"Nieuwboer","year":"2002","journal-title":"SAGE Journals"},{"key":"10.1016\/j.compbiomed.2019.103347_bib12","doi-asserted-by":"crossref","first-page":"287","DOI":"10.3233\/JPD-2011-11016","article-title":"Predicting outcomes in Parkinson's disease: comparison of simple motor performance measures and the Unified Parkinson's Disease Rating Scale-III.","volume":"3","author":"Grill","year":"2011","journal-title":"J. Parkinson's Dis."},{"key":"10.1016\/j.compbiomed.2019.103347_bib13","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1016\/j.nicl.2017.08.021","article-title":"Improved prediction of outcome in Parkinson's disease using radiomics analysis of longitudinal DAT SPECT images","volume":"16","author":"Rahmim","year":"2017","journal-title":"Neuroimage: Clinic"},{"key":"10.1016\/j.compbiomed.2019.103347_bib14","doi-asserted-by":"crossref","first-page":"1738","DOI":"10.1002\/mds.27190","article-title":"Prediction of cognitive worsening in de novo Parkinson's disease: clinical use of biomarkers","volume":"32","author":"Arnaldi","year":"2017","journal-title":"Mov. Disord."},{"key":"10.1016\/j.compbiomed.2019.103347_bib15","first-page":"213","article-title":"Prediction of cognitive decline in PD","volume":"14","author":"Fyfe","year":"2018","journal-title":"Nat. Rev. Neurol."},{"key":"10.1016\/j.compbiomed.2019.103347_bib16","first-page":"1","article-title":"Model-based and model-free machine learning techniques for diagnostic prediction and classification of clinical outcomes in Parkinson's disease","author":"Gao","year":"2018","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compbiomed.2019.103347_bib17","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1111\/ncn3.80","article-title":"Comparing the montreal cognitive assessment with mini-mental state examination in Japanese Parkinson's disease patients","volume":"2","author":"Ohta","year":"2014","journal-title":"Neurology and Clinical Neuroscience"},{"issue":"1","key":"10.1016\/j.compbiomed.2019.103347_bib18","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1002\/pnp.457","article-title":"Diagnostic test accuracy of cognitive screeners in older people","volume":"21","author":"Wojtowicz","year":"2017","journal-title":"Prog. Neurol. Psychiatr."},{"issue":"11","key":"10.1016\/j.compbiomed.2019.103347_bib19","doi-asserted-by":"crossref","first-page":"1145","DOI":"10.1016\/j.parkreldis.2014.08.002","article-title":"Montreal Cognitive Assessment for the screening and prediction of cognitive decline in early Parkinson's disease","volume":"20","author":"Kandiah","year":"2014","journal-title":"Park. Relat. Disord."},{"key":"10.1016\/j.compbiomed.2019.103347_bib20","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/S1474-4422(16)30328-3","article-title":"Clinical variables and biomarkers in prediction of cognitive impairment in patients with newly diagnosed Parkinson's disease: a cohort study","volume":"16","author":"Schrag","year":"2017","journal-title":"Lancet Neurol."},{"issue":"1","key":"10.1016\/j.compbiomed.2019.103347_bib21","first-page":"70","article-title":"A REVIEW OF STUDIES ON MACHINE LEARNING TECHNIQUES","volume":"1","author":"Singh","year":"2007","journal-title":"Int. J. Comput. Sci. Secur."},{"issue":"15","key":"10.1016\/j.compbiomed.2019.103347_bib22","first-page":"845","article-title":"Local linear model Trees (LOLIMOT) toolbox for nonlinear system identification","volume":"33","author":"Nelles","year":"2000","journal-title":"science Direct (IFAC System Identification)"},{"key":"10.1016\/j.compbiomed.2019.103347_bib23","first-page":"251","article-title":"Modeling of internal combustion engine emissions by","volume":"3","author":"Mart\u2032\u0131nez-Morales","year":"2012","journal-title":"SciVerse Science Direct"},{"issue":"2","key":"10.1016\/j.compbiomed.2019.103347_bib24","first-page":"17","article-title":"A study of applications of RBF network","volume":"94","author":"Arora","year":"2014","journal-title":"Int. J. Comput. Appl."},{"issue":"4","key":"10.1016\/j.compbiomed.2019.103347_bib25","first-page":"378","article-title":"Back propagation algorithm: the best algorithm","volume":"9","author":"Alsmadi","year":"2009","journal-title":"IJCSNS International Journal of Computer Science and Network Security"},{"issue":"9","key":"10.1016\/j.compbiomed.2019.103347_bib26","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1038\/323533a0","article-title":"Leaner Representations by back-Propagating errors","volume":"323","author":"Rumelhart","year":"1986","journal-title":"Nature"},{"key":"10.1016\/j.compbiomed.2019.103347_bib27","series-title":"Feature Selection Using LASSO","author":"Fonti","year":"2017"},{"key":"10.1016\/j.compbiomed.2019.103347_bib28","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1214\/009053604000000067","article-title":"Least angle regression","volume":"32","author":"Efron","year":"2004","journal-title":"Ann. Stat."},{"key":"10.1016\/j.compbiomed.2019.103347_bib29","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"issue":"5","key":"10.1016\/j.compbiomed.2019.103347_bib30","first-page":"272","article-title":"Random forests and decision Trees","volume":"9","author":"Jehad","year":"2012","journal-title":"IJCSI International Journal of Computer Science Issues"},{"issue":"1","key":"10.1016\/j.compbiomed.2019.103347_bib31","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1109\/72.822523","article-title":"Existence and learning of oscillations in recurrent neural networks","volume":"11","author":"Townley","year":"2000","journal-title":"IEEE Trans. Neural Netw."},{"issue":"2","key":"10.1016\/j.compbiomed.2019.103347_bib32","first-page":"3","article-title":"Investigation of financial market prediction by recurrent neural network","volume":"11","author":"Maknickiene","year":"2011","journal-title":"Innovative Infotechnologies for Science, Business and Education"},{"key":"10.1016\/j.compbiomed.2019.103347_bib33","series-title":"AIP Conference Proceedings","doi-asserted-by":"crossref","DOI":"10.1063\/1.5016665","article-title":"A simulation study on Bayesian Ridge regression models for several collinearity levels","author":"Efendi","year":"2017"},{"key":"10.1016\/j.compbiomed.2019.103347_bib34","series-title":"Pattern Recognition and Machine Learning","author":"Bishop","year":"2006"},{"key":"10.1016\/j.compbiomed.2019.103347_bib35","series-title":"Fast Marginal Likelihood Estimation of the Ridge Parameter(s) in Ridge Regression and Generalized Ridge Regression for Big Data","first-page":"1","author":"Karabatsos","year":"2015"},{"key":"10.1016\/j.compbiomed.2019.103347_bib36","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S1042-8143(05)80020-2","article-title":"Decision tree design using information theory","volume":"2","author":"RodneyOD","year":"1990","journal-title":"Knowl. Acquis."},{"issue":"12","key":"10.1016\/j.compbiomed.2019.103347_bib37","first-page":"1","article-title":"Survey paper on improved methods of ID3 decision tree","volume":"3","author":"Chourasia","year":"2013","journal-title":"International Journal of Scientific and Research Publications"},{"key":"10.1016\/j.compbiomed.2019.103347_bib38","series-title":"Bayesian Methods for Nonlinear Classification and Regression","author":"Denison","year":"2002"},{"key":"10.1016\/j.compbiomed.2019.103347_bib39","first-page":"551","article-title":"On-line passive-aggressive algorithms","volume":"7","author":"Crammer","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.compbiomed.2019.103347_bib40","first-page":"266","article-title":"Online passive aggressive active learning and its","volume":"39","author":"Lu","year":"2014","journal-title":"JMLR: Workshop and Conference Proceedings"},{"key":"10.1016\/j.compbiomed.2019.103347_bib41","first-page":"96","article-title":"Online passive-aggressive algorithms for non-negative matrix factorization and completion","volume":"vol. 33","author":"Blondel","year":"2014"},{"key":"10.1016\/j.compbiomed.2019.103347_bib42","first-page":"137","article-title":"A comparative study of ordinary Least squares regression and theil-sen regression through simulation in the presence of outliers","volume":"V","author":"Shah","year":"2016","journal-title":"Lasbela, U. J.Sci.Techl"},{"key":"10.1016\/j.compbiomed.2019.103347_bib43","first-page":"386","article-title":"A rank-invariant method of linear and polynomial regression analysis. I, II, III","volume":"53","author":"Theil","year":"1950","journal-title":"Nederl. Akad. Wetensch"},{"issue":"324","key":"10.1016\/j.compbiomed.2019.103347_bib44","doi-asserted-by":"crossref","first-page":"1379","DOI":"10.1080\/01621459.1968.10480934","article-title":"Estimates of the regression coefficient based on kendall's tau","volume":"63","author":"Sen","year":"1968","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.compbiomed.2019.103347_bib45","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.cam.2004.07.034","article-title":"Genetic algorithms for modelling and optimisation","volume":"184","author":"McCall","year":"2004","journal-title":"J. Comput. Appl. Math."},{"issue":"1","key":"10.1016\/j.compbiomed.2019.103347_bib46","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1002\/cplx.6130010108","article-title":"Genetic algorithms: an overview","volume":"1","author":"Mitchell","year":"1995","journal-title":"Complexity"},{"key":"10.1016\/j.compbiomed.2019.103347_bib47","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.plrev.2005.10.001","article-title":"Ant colony optimization: introduction and recent trends","volume":"2","author":"Blum","year":"2005","journal-title":"Phys. Life Rev."},{"issue":"3","key":"10.1016\/j.compbiomed.2019.103347_bib48","first-page":"574","article-title":"A survey of ant colony optimization","volume":"6","author":"Sivakumar","year":"2016","journal-title":"Int. J. Adv. Res. Comput. Sci. Softw. Eng."},{"key":"10.1016\/j.compbiomed.2019.103347_bib49","first-page":"180","article-title":"Analysis of particle Swarm optimization algorithm","volume":"3","author":"Bai","year":"2010","journal-title":"Comput. Inf. Sci."},{"issue":"4","key":"10.1016\/j.compbiomed.2019.103347_bib50","first-page":"551","article-title":"A review on particle Swarm optimization algorithm","volume":"5","author":"Singh","year":"2014","journal-title":"Int. J. Sci. Eng. Res."},{"key":"10.1016\/j.compbiomed.2019.103347_bib51","doi-asserted-by":"crossref","first-page":"725","DOI":"10.1002\/aic.690350504","article-title":"Process optimization via simulated","volume":"35","author":"Dolan","year":"1989","journal-title":"AIChE J."},{"key":"10.1016\/j.compbiomed.2019.103347_bib52","first-page":"671","article-title":"Optimization by simulated annealing","volume":"220","author":"Kirkpatrick","year":"1983","journal-title":"Science, New Series"},{"key":"10.1016\/j.compbiomed.2019.103347_bib53","first-page":"53","article-title":"A simple and global optimization algorithm for","volume":"12","author":"KARABOGA","year":"2004","journal-title":"Turk J Elec Engin"},{"key":"10.1016\/j.compbiomed.2019.103347_bib54","first-page":"95","article-title":"Simplex differential evolution","volume":"6","author":"Musrrat","year":"2009","journal-title":"Acta Polytechnica Hungarica"},{"key":"10.1016\/j.compbiomed.2019.103347_bib55","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1109\/4235.996017","article-title":"A fast and elitist multiobjective genetic algorithm","volume":"6","author":"Kalyanmoy","year":"2002","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.compbiomed.2019.103347_bib56","doi-asserted-by":"crossref","first-page":"3978","DOI":"10.1016\/j.proeng.2011.08.745","article-title":"Overview of NSGA-II for optimizing machining process parameters","volume":"15","author":"Yusoff","year":"2011","journal-title":"Procedia Engineering"},{"key":"10.1016\/j.compbiomed.2019.103347_bib57","series-title":"IEEE Nucl. Sci. Symp Conf. Record, Sedney","article-title":"Machine learning methods for optimal prediction of outcome in Parkinson's disease","author":"Salmanpour","year":"2018"},{"key":"10.1016\/j.compbiomed.2019.103347_bib58","doi-asserted-by":"crossref","first-page":"1724","DOI":"10.1001\/archneur.59.11.1724","article-title":"Predicting motor decline and disability in Parkinson disease","volume":"59","author":"Marras","year":"2002","journal-title":"Arch. Neurol."},{"key":"10.1016\/j.compbiomed.2019.103347_bib59","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1136\/jnnp.67.3.300","article-title":"The sydny multicentre stuly of Parkinson's Disease : progression and mortality at 10 years","volume":"67","author":"Hely","year":"1999","journal-title":"J Neurol Neurosurg Psychiarty"},{"issue":"4","key":"10.1016\/j.compbiomed.2019.103347_bib60","doi-asserted-by":"crossref","first-page":"344","DOI":"10.1590\/s1980-5764-2016dn1004015","article-title":"Comparison of the use of screening tools","volume":"10","author":"Camargo","year":"2016","journal-title":"Dement Neuropsychol"},{"issue":"2","key":"10.1016\/j.compbiomed.2019.103347_bib61","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1002\/mds.27233","article-title":"Global scales for cognitive screening in Parkinson's disease: critique and recommendations","volume":"33","author":"Skorvanek","year":"2017","journal-title":"Mov. Disord."},{"issue":"4","key":"10.1016\/j.compbiomed.2019.103347_bib62","doi-asserted-by":"crossref","DOI":"10.1212\/WNL.0b013e3181ab2b58","article-title":"Mapping of brain acetylcholinesterase alterations in Lewy body disease by PET","volume":"73","author":"Shimada","year":"2009","journal-title":"Neurology"},{"issue":"7","key":"10.1016\/j.compbiomed.2019.103347_bib63","doi-asserted-by":"crossref","first-page":"1210","DOI":"10.1111\/ene.13004","article-title":"complaint., Relationship between anxiety and cognitive performance in an elderly population with a cognitive","volume":"23","author":"Delphin-Combe","year":"2016","journal-title":"Eur. J. Neurol."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482519302161?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482519302161?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,1,8]],"date-time":"2021-01-08T10:46:51Z","timestamp":1610102811000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482519302161"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,8]]},"references-count":63,"alternative-id":["S0010482519302161"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2019.103347","relation":{},"ISSN":["0010-4825"],"issn-type":[{"value":"0010-4825","type":"print"}],"subject":[],"published":{"date-parts":[[2019,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Optimized machine learning methods for prediction of cognitive outcome in Parkinson's disease","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2019.103347","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103347"}}