{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T03:18:19Z","timestamp":1725851899191},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100008984","name":"IIT Kharagpur","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100008984","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2019,1]]},"DOI":"10.1016\/j.compbiomed.2018.11.001","type":"journal-article","created":{"date-parts":[[2018,11,5]],"date-time":"2018-11-05T12:10:48Z","timestamp":1541419848000},"page":"29-42","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":26,"special_numbering":"C","title":["Efficient automated detection of mitotic cells from breast histological images using deep convolution neutral network with wavelet decomposed patches"],"prefix":"10.1016","volume":"104","author":[{"given":"Dev Kumar","family":"Das","sequence":"first","affiliation":[]},{"given":"Pranab Kumar","family":"Dutta","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2018.11.001_bib1","first-page":"867607","article-title":"Detecting mitotic figures in breast cancer histopathology images","author":"Veta","year":"2013","journal-title":"Proc. SPIE-Int. Soc. Opt. Eng."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib2","first-page":"90410B","article-title":"Cascaded ensemble of convolutional neural networks and handcrafted features for mitosis detection","author":"Wang","year":"2014","journal-title":"Proc. SPIE-Int. Soc. Opt. Eng."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib3","series-title":"Proc. IEEE 11th Int. Symp. Biomed. Imag","first-page":"1360","article-title":"A comparison of algorithms and humans for mitosis detection","author":"Giusti","year":"2014"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib4","first-page":"661","article-title":"Mitotic cell recognition with hidden Markov models","author":"Gallardo","year":"2004","journal-title":"SPIE Int. Soc. Opt. Eng."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib5","series-title":"Proc. 21st IEEE Int. Conf. Pattern Recognit","first-page":"149","article-title":"A gamma-Gaussian mixture model for detection of mitotic cells in breast cancer histopathology images","author":"Khan","year":"2012"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib6","doi-asserted-by":"crossref","first-page":"139","DOI":"10.4103\/2228-7477.130493","article-title":"A novel CAD system for mitosis detection using histopathology slide images","volume":"4","author":"Tashk","year":"2014","journal-title":"J. Med. Signals Sens."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib7","series-title":"Proc. IEEE 21th Iranian Conf. Biomed. Eng","first-page":"1","article-title":"Automatic detection of mitosis cell in breast cancer histopathology images using genetic algorithm","author":"Nateghi","year":"2014"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib8","doi-asserted-by":"crossref","first-page":"594","DOI":"10.1109\/JBHI.2013.2277837","article-title":"Toward automatic mitotic cell detection and segmentation in multispectral histopathological images","volume":"18","author":"Lu","year":"2014","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib9","first-page":"2290","article-title":"Wavelet-based statistical features for distinguishing mitotic and non-mitotic cells in breast cancer histopathology","author":"Wan","year":"2014","journal-title":"Proc. IEEE Int. Conf. Image Process."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib10","doi-asserted-by":"crossref","first-page":"10","DOI":"10.4103\/2153-3539.112695","article-title":"Automated mitosis detection in histopathology using morphological and multi-channel statistics features","volume":"4","author":"Irshad","year":"2013","journal-title":"J. Pathol. Inf."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib11","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1111\/jmi.12237","article-title":"Automated image analysis of nuclear atypia in high\u2010power field histopathological image","volume":"258","author":"Lu","year":"2015","journal-title":"J. Microsc."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib12","series-title":"Proc. 21st IEEE Int. Conf. Pattern Recognit","first-page":"2306","article-title":"Learning-based mitotic cell detection in histopathological images","author":"Sommer","year":"2012"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib13","doi-asserted-by":"crossref","first-page":"6165","DOI":"10.1016\/j.apm.2015.01.051","article-title":"Automatic detection of breast cancer mitotic cells based on the combination of textural, statistical and innovative mathematical features","volume":"39","author":"Tashk","year":"2015","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib14","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1007\/s10916-017-0773-9","article-title":"Maximized inter-class weighted mean for fast and accurate mitosis cells detection in breast cancer histopathology images","volume":"41","author":"Nateghi","year":"2017","journal-title":"J. Med. Syst."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib15","doi-asserted-by":"crossref","first-page":"12","DOI":"10.4103\/2153-3539.112697","article-title":"Mitosis detection using generic features and an ensemble of cascade adaboosts","volume":"4","author":"Tek","year":"2013","journal-title":"J. Pathol. Inf."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib16","series-title":"Proc. 14th IEEEInt. Symp. Biomed. Imag","first-page":"341","article-title":"Deep residual Hough voting for mitotic cell detection in histopathology images","author":"Wollmann","year":"2017"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib17","series-title":"Proc. ACM Indian Conf. Comput. Vision Graph. Image Process","first-page":"85","article-title":"Enhanced random forest for mitosis detection","author":"Paul","year":"2014"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib18","first-page":"66","article-title":"Semi automated mitosis detection in histopathological images of breast","volume":"11","author":"\u015eerb\u0103nescu","year":"2013","journal-title":"Annals. Computer Science Series"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib19","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.media.2017.07.005","article-title":"A survey on deep learning in medical image analysis","volume":"42","author":"Litjens","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib20","series-title":"Proc. Int. Conf. on Comput. Sc. Eng. (UBMK)","first-page":"5","article-title":"Deep learning in medical image analysis: recent advances and future trends","author":"Goceri","year":"2017"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib21","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1146\/annurev-bioeng-071516-044442","article-title":"Deep learning in medical image analysis","volume":"19","author":"Shen","year":"2017","journal-title":"Annu. Rev. Biomed. Eng."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib22","doi-asserted-by":"crossref","first-page":"9375","DOI":"10.1109\/ACCESS.2017.2788044","article-title":"Deep learning applications in medical image analysis","volume":"6","author":"Ker","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib23","series-title":"Proc. 17th Int. Conf. Med. Image Comput. Comput. -Assisted Intervention","first-page":"411","article-title":"Mitosis detection in breast cancer histology images with deep neural networks","author":"Cire\u015fan","year":"2013"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib24","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.neuroimage.2014.12.061","article-title":"Deep convolutional neural networks for multi-modality isointense infant brain image segmentation","volume":"108","author":"Zhang","year":"2015","journal-title":"Neuroimage"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib25","doi-asserted-by":"crossref","first-page":"9","DOI":"10.4103\/2153-3539.112694","article-title":"Classification of mitotic figures with convolutional neural networks and seeded blob features","volume":"4","author":"Malon","year":"2013","journal-title":"J. Pathol. Inf."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib26","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/j.compmedimag.2017.12.001","article-title":"Efficient deep learning model for mitosis detection using breast histopathology images","volume":"64","author":"Saha","year":"2018","journal-title":"Comput. Med. Imag. Graph."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib27","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.media.2017.12.002","article-title":"DeepMitosis: mitosis detection via deep detection, verification and segmentation networks","volume":"45","author":"Li","year":"2018","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib28","series-title":"Proc. 13th AAAI","first-page":"1160","article-title":"Mitosis detection in breast cancer histology images via deep cascaded networks","author":"Chen","year":"2016"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib29","doi-asserted-by":"crossref","first-page":"961","DOI":"10.1109\/18.57199","article-title":"The wavelet transform, time-frequency localization and signal analysis","volume":"36","author":"Daubechies","year":"1990","journal-title":"IEEE Trans. Inf. Theor."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib30","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1007\/s007990050026","article-title":"Content-based image indexing and searching using Daubechies' wavelets","volume":"1","author":"Wang","year":"1998","journal-title":"Int. J. Digit. Libr."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib31","series-title":"Mitosis Detection in Breast Cancer Histological Images","author":"Roux","year":"2012"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib32","doi-asserted-by":"crossref","first-page":"8","DOI":"10.4103\/2153-3539.112693","article-title":"Mitosis detection in breast cancer histological images, an ICPR 2012 contest","volume":"4","author":"Roux","year":"2013","journal-title":"J. Pathol. Inf."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib33","series-title":"Proc. IEEE Int. Symp. Biomed. Imaging: from Nano to Macro","first-page":"1107","article-title":"A method for normalizing histology slides for quantitative analysis","author":"Macenko","year":"2009"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib34","unstructured":"R.C. Gonzalez, R.E. Woods, Digital Image Processing, third ed., Dorling Kindersly India."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib35","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1109\/LSP.2017.2657381","article-title":"Deep convolutional neural networks and data augmentation for environmental sound classification","volume":"24","author":"Salamon","year":"2017","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib36","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.cmpb.2016.10.007","article-title":"Classification of CT brain images based on deep learning networks","volume":"138","author":"Gao","year":"2017","journal-title":"Comput. Methods Progr. Biomed."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib37","doi-asserted-by":"crossref","first-page":"2369","DOI":"10.1109\/TMI.2016.2546227","article-title":"Segmenting retinal blood vessels with deep neural networks","volume":"35","author":"Liskowski","year":"2016","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib38","unstructured":"J. Johnson, A. Karpathy, CS231n Convolutional Neural Networks for Visual Recognition, http:\/\/cs231n.github.io\/optimization-1\/."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib39","unstructured":"J. Johnson, A. Karpathy, Linear Classification; CS231n Convolutional Neural Networks for Visual Recognition, http:\/\/cs231n.github.io\/linear-classify\/."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib40","series-title":"Proc. IEEE Conf. Comput. Vision Pattern Recognit","first-page":"5353","article-title":"Convolutional neural networks at constrained time cost","author":"He","year":"2015"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib41","first-page":"1","article-title":"Computational approach for mitotic cell detection and its application in oral squamous cell carcinoma","author":"Das","year":"2017","journal-title":"Multidimens. Syst. Signal Process."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib42","series-title":"Mitosis Atypia 14 Grand Challenge","author":"Roux","year":"2014"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib43","doi-asserted-by":"crossref","first-page":"e360","DOI":"10.1002\/mp.12344","article-title":"A deep convolutional neural network using directional wavelets for low\u2010dose X\u2010ray CT reconstruction","volume":"44","author":"Kang","year":"2017","journal-title":"Med. Phys."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib44","doi-asserted-by":"crossref","first-page":"3640901","DOI":"10.1155\/2017\/3640901","article-title":"Three-class mammogram classification based on descriptive CNN features","volume":"2017","author":"Jadoon","year":"2017","journal-title":"BioMed Res. Int."},{"key":"10.1016\/j.compbiomed.2018.11.001_bib45","series-title":"15th IEEE Int. Conf. Machine Learning Appl","first-page":"233","article-title":"Advanced image classification using wavelets and convolutional neural networks","author":"Williams","year":"2016"},{"key":"10.1016\/j.compbiomed.2018.11.001_bib46","first-page":"1","article-title":"Wavelet transform based convolutional neural network for gearbox fault classification","author":"Liao","year":"2017","journal-title":"Proc. IEEE Int. Conf. Progn. Syst. Health Manag."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482518303391?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482518303391?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,10,31]],"date-time":"2019-10-31T15:32:27Z","timestamp":1572535947000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482518303391"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,1]]},"references-count":46,"alternative-id":["S0010482518303391"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2018.11.001","relation":{},"ISSN":["0010-4825"],"issn-type":[{"value":"0010-4825","type":"print"}],"subject":[],"published":{"date-parts":[[2019,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Efficient automated detection of mitotic cells from breast histological images using deep convolution neutral network with wavelet decomposed patches","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2018.11.001","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}