{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,17]],"date-time":"2024-08-17T05:09:28Z","timestamp":1723871368897},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,5,1]],"date-time":"2018-05-01T00:00:00Z","timestamp":1525132800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2018,5]]},"DOI":"10.1016\/j.compbiomed.2018.03.015","type":"journal-article","created":{"date-parts":[[2018,3,28]],"date-time":"2018-03-28T06:08:49Z","timestamp":1522217329000},"page":"214-226","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":19,"special_numbering":"C","title":["3-D segmentation of lung nodules using hybrid level sets"],"prefix":"10.1016","volume":"96","author":[{"given":"Hina","family":"Shakir","sequence":"first","affiliation":[]},{"given":"Tariq Mairaj","family":"Rasool Khan","sequence":"additional","affiliation":[]},{"given":"Haroon","family":"Rasheed","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"8","key":"10.1016\/j.compbiomed.2018.03.015_bib1","doi-asserted-by":"crossref","DOI":"10.21037\/atm.2016.03.11","article-title":"Lung cancer epi-demiology: contemporary and future challenges worldwide","volume":"4","author":"Didkowska","year":"2016","journal-title":"Ann. Transl. Med."},{"issue":"1","key":"10.1016\/j.compbiomed.2018.03.015_bib2","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1186\/s12938-015-0120-7","article-title":"Computer-aided detection (cade) and diagnosis (cadx) system for lung cancer with likelihood of malignancy","volume":"15","author":"Firmino","year":"2016","journal-title":"Biomed. Eng. Online"},{"issue":"2","key":"10.1016\/j.compbiomed.2018.03.015_bib3","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1136\/thoraxjnl-2015-207140","article-title":"UK lung cancer rct pilot screening trial: baseline findings from the screening arm provide evidence for the potential implementation of lung cancer screening","volume":"71","author":"Field","year":"2016","journal-title":"Thorax"},{"key":"10.1016\/j.compbiomed.2018.03.015_bib4","article-title":"Detection of lung cancer through low-dose ct screening (nelson): a prespecified analysis of screening test performance and interval cancers","volume":"15","author":"Horeweg","year":"2014","journal-title":"Lancet Oncol."},{"key":"10.1016\/j.compbiomed.2018.03.015_bib5","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1593\/tlo.11232","article-title":"Measurement of tumor volumes improves recist-based response assessments in advanced lung cancer","volume":"5","author":"Mozley","year":"2012","journal-title":"Translational Oncology"},{"key":"10.1016\/j.compbiomed.2018.03.015_bib6","series-title":"3d Mul-tiscale Physiological Human","first-page":"81","article-title":"Deformable models in medical image segmentation","author":"Becker","year":"2014"},{"key":"10.1016\/j.compbiomed.2018.03.015_bib7","first-page":"1921","article-title":"A\u00a0deformable surface model based on boundary and region information for pulmonary nodule segmentation from 3-d thoracic ct images","author":"Kawata","year":"2003","journal-title":"IEICE Trans. Info Syst."},{"key":"10.1016\/j.compbiomed.2018.03.015_bib8","first-page":"611","article-title":"A\u00a0framework for automatic segmentation of lung nodules from low dose chest ct scans","volume":"vol. 3","author":"El-Baz","year":"2006"},{"key":"10.1016\/j.compbiomed.2018.03.015_bib9","series-title":"Medical Imaging: Image Processing,Proc.SPIE","article-title":"Segmentation of ground glass opacities by asymmetric multi-phase deformable model","author":"Yongseok","year":"2006"},{"issue":"7","key":"10.1016\/j.compbiomed.2018.03.015_bib10","doi-asserted-by":"crossref","first-page":"2323","DOI":"10.1118\/1.2207129","article-title":"Computer-aided diagnosis of pulmonary nodules on ct scans: segmentation and classification using 3d active contours","volume":"33","author":"Way","year":"2006","journal-title":"Med. Phys."},{"key":"10.1016\/j.compbiomed.2018.03.015_bib11","series-title":"Frontiers in Biomedical Engineering and Biotechnology ,Proceedings of the 2nd International Conference on Biomedical Engineering and Biotechnology","article-title":"Fuzzy speed function based active contour model for segmentation of pulmonary nodules","author":"chen","year":"2013"},{"issue":"1","key":"10.1016\/j.compbiomed.2018.03.015_bib12","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1186\/s12938-016-0164-3","article-title":"Segmentation of pulmonary nodules using adaptive local region energy with probability density function-based similarity distance and multi-features clustering","volume":"15","author":"Li","year":"2016","journal-title":"Biomed. Eng. Online"},{"issue":"1","key":"10.1016\/j.compbiomed.2018.03.015_bib13","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1186\/1475-925X-13-41","article-title":"Computer-aided detection system for lung cancer in computed tomography scans: review and future prospects","volume":"13","author":"Firmino","year":"2014","journal-title":"Biomed. Eng. Online"},{"key":"10.1016\/j.compbiomed.2018.03.015_bib14","series-title":"International Journal of Biomedical Imaging","article-title":"Computer-aided diagnosis systems for lung cancer: challenges and method-ologies","author":"El-Baz","year":"2013"},{"issue":"10","key":"10.1016\/j.compbiomed.2018.03.015_bib15","doi-asserted-by":"crossref","first-page":"1259","DOI":"10.1109\/TMI.2003.817785","article-title":"Three-dimensional seg-mentation and growth-rate estimation of small pulmonary nodules in helical ct images","volume":"22","author":"Kostis","year":"2003","journal-title":"IEEE Trans. Med. Imag."},{"issue":"3","key":"10.1016\/j.compbiomed.2018.03.015_bib16","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1109\/TMI.2004.843172","article-title":"Robust anisotropic Gaussian fitting for volumetric characterization of pulmonary nodules in multislice ct","volume":"24","author":"Okada","year":"2005","journal-title":"IEEE Trans. Med. Imag."},{"issue":"1","key":"10.1016\/j.compbiomed.2018.03.015_bib17","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1109\/TITB.2007.899504","article-title":"3-d segmentation algorithm of small lung nodules in spiral ct images","volume":"12","author":"Diciotti","year":"2008","journal-title":"IEEE Trans. Inf. Technol. Biomed."},{"issue":"4","key":"10.1016\/j.compbiomed.2018.03.015_bib18","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1109\/TMI.2006.871547","article-title":"Morphological segmentation and partial volume analysis for volumetry of solid pul- monaryesions in thoracic ct scans","volume":"25","author":"Kuhnigk","year":"2006","journal-title":"IEEE Trans. Med. Imag."},{"issue":"1","key":"10.1016\/j.compbiomed.2018.03.015_bib19","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1109\/JSTSP.2008.2011107","article-title":"Advanced segmentation techniques for lung nodules, liver metastases, and enlarged lymph nodes in ct scans","volume":"3","author":"Moltz","year":"2009","journal-title":"IEEE Journal of Selected Topics in Signal Processing"},{"issue":"5","key":"10.1016\/j.compbiomed.2018.03.015_bib20","first-page":"1","article-title":"X-ray computed tomography: semiautomated volumetric analysis of late-stage lung tumors as a basis for response assessments","volume":"2011","author":"Bendtsen","year":"2011","journal-title":"Journal of Biomedical Imaging"},{"issue":"1","key":"10.1016\/j.compbiomed.2018.03.015_bib21","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.media.2015.02.002","article-title":"Segmentation of pulmonary nodules in com-puted tomography using a regression neural network approach and its application to the lung image database consortium and image database resource initiative dataset","volume":"22","author":"Messay","year":"2015","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2018.03.015_bib22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/BF01385685","article-title":"A\u00a0geometric model for active contours in image process-ing","volume":"66","author":"Caselles","year":"1993","journal-title":"Numer. Math."},{"issue":"4","key":"10.1016\/j.compbiomed.2018.03.015_bib23","doi-asserted-by":"crossref","first-page":"1979","DOI":"10.1109\/TIP.2017.2666042","article-title":"Weighted level set evolution based on local edge features for medical image segmentation","volume":"26","author":"Khadidos","year":"2017","journal-title":"IEEE Trans. Image Process."},{"issue":"11","key":"10.1016\/j.compbiomed.2018.03.015_bib24","doi-asserted-by":"crossref","DOI":"10.1002\/cnm.2765","article-title":"Fully automated liver segmentation using sobolev gradient-based level set evolu-tion","volume":"32","author":"Goceri","year":"2016","journal-title":"International Journal for Numerical Methods in Biomedical Engineering"},{"key":"10.1016\/j.compbiomed.2018.03.015_bib25","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1016\/j.compmedimag.2017.06.003","article-title":"A\u00a0level-set approach to joint image segmentation and registration with application to ct lung imaging","volume":"65","author":"Swierczynski","year":"2018","journal-title":"Comput. Med. Imag. Graph."},{"issue":"3","key":"10.1016\/j.compbiomed.2018.03.015_bib26","doi-asserted-by":"crossref","first-page":"741","DOI":"10.3906\/elk-1304-36","article-title":"A\u00a0comparative performance evaluation of various approaches for liver segmentation from spir images","volume":"23","author":"Goceri","year":"2015","journal-title":"Turk. J. Electr. Eng. Comput. Sci."},{"issue":"1","key":"10.1016\/j.compbiomed.2018.03.015_bib27","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/0021-9991(88)90002-2","article-title":"Fronts propagating with curvature-dependent speed: algo-rithms based on Hamilton-Jacobi formulations","volume":"79","author":"Osher","year":"1988","journal-title":"J.\u00a0Comput. Phys."},{"issue":"Supplement C","key":"10.1016\/j.compbiomed.2018.03.015_bib28","doi-asserted-by":"crossref","first-page":"492","DOI":"10.1016\/j.jcp.2017.02.030","article-title":"3d level set methods for evolving fronts on tetrahedral meshes with adaptive mesh refinement","volume":"336","author":"Morgan","year":"2017","journal-title":"J.\u00a0Comput. Phys."},{"key":"10.1016\/j.compbiomed.2018.03.015_bib29","doi-asserted-by":"crossref","first-page":"3724","DOI":"10.3390\/s130303724","article-title":"Multipass active contours for an adaptive contour map","volume":"13","author":"Kim","year":"2013","journal-title":"Sensors"},{"issue":"11","key":"10.1016\/j.compbiomed.2018.03.015_bib30","doi-asserted-by":"crossref","DOI":"10.1002\/cnm.2862","article-title":"Quanti-tative validation of anti-ptbp1 antibody for diagnostic neuropathology use: image analysis ap-proach","volume":"33","author":"Goceri","year":"2017","journal-title":"International Journal for Numerical Methods in Biomedical Engineering"},{"key":"10.1016\/j.compbiomed.2018.03.015_bib31","series-title":"35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)","first-page":"2984","article-title":"Computerized segmentation of liver in hepatic ct and mri by means of level-set geodesic active contouring in 2013","author":"Suzuki","year":"2013"},{"issue":"2","key":"10.1016\/j.compbiomed.2018.03.015_bib32","doi-asserted-by":"crossref","first-page":"266","DOI":"10.1109\/83.902291","article-title":"Active contours without edges","volume":"10","author":"Chan","year":"2001","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"10.1016\/j.compbiomed.2018.03.015_bib33","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1148\/radiol.2522081593","article-title":"Evaluating variability in tumor measurements from same-day repeat ct scans of patients with non-small cell lung cancer","volume":"252","author":"Zhao","year":"2009","journal-title":"Radiology"},{"issue":"14","key":"10.1016\/j.compbiomed.2018.03.015_bib34","doi-asserted-by":"crossref","first-page":"15244","DOI":"10.1364\/OE.18.015244","article-title":"A\u00a0resource for the assessment of lung nodule size estimation methods: database of thoracic ct scans of an anthropomorphic phantom","volume":"18","author":"Gavrielides","year":"2010","journal-title":"Optic Express"},{"issue":"2","key":"10.1016\/j.compbiomed.2018.03.015_bib35","doi-asserted-by":"crossref","first-page":"915","DOI":"10.1118\/1.3528204","article-title":"The lung image database consortium (lidc) and image database re-source initiative (idri): a completed reference database of lung nodules on ct scans","volume":"38","author":"Armato","year":"2011","journal-title":"Med. Phys."},{"issue":"2","key":"10.1016\/j.compbiomed.2018.03.015_bib36","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1148\/radiol.12111607","article-title":"Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data -methods and preliminary results","volume":"264","author":"Gevaert","year":"2012","journal-title":"Radiology"},{"key":"10.1016\/j.compbiomed.2018.03.015_bib37","doi-asserted-by":"crossref","first-page":"1216","DOI":"10.1016\/j.media.2012.06.002","article-title":"A\u00a03d interactive multi-object segmentation tool using local robust statistics driven active contours","volume":"16","author":"Gao","year":"2012","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2018.03.015_bib38","doi-asserted-by":"crossref","first-page":"1323","DOI":"10.1016\/j.mri.2012.05.001","article-title":"3d slicer as an image computing platform for the quantitative imaging network","volume":"9","author":"Fedorov","year":"2012","journal-title":"MRI (Magn. Reson. Imaging)"},{"issue":"4","key":"10.1016\/j.compbiomed.2018.03.015_bib39","doi-asserted-by":"crossref","first-page":"476","DOI":"10.1007\/s10278-016-9859-z","article-title":"A\u00a0comparison of lung nodule segmentation algorithms: methods and results from a multi-institutional study","volume":"29","author":"Kalpathy-Cramer","year":"2016","journal-title":"J.\u00a0Digit. Imag."},{"issue":"Supplement C","key":"10.1016\/j.compbiomed.2018.03.015_bib40","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1016\/j.compbiomed.2014.08.005","article-title":"Soft computing approach to 3d lung nodule segmentation in ct","volume":"53","author":"Badura","year":"2014","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2018.03.015_bib41","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1016\/j.media.2010.08.005","article-title":"Segmentation of pul-monary nodules of various densities with morphological approaches and convexity models","volume":"15","author":"Kubota","year":"2008","journal-title":"Med. Image Anal."},{"issue":"12","key":"10.1016\/j.compbiomed.2018.03.015_bib42","doi-asserted-by":"crossref","first-page":"4678","DOI":"10.1118\/1.2799885","article-title":"Segmentation of pulmonary nodules in three-dimensional ct images by use of a spiral-scanning technique","volume":"34","author":"Wang","year":"2007","journal-title":"Med. Phys."},{"key":"10.1016\/j.compbiomed.2018.03.015_bib43","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.eswa.2016.05.024","article-title":"Hessian based approaches for 3d lung nodule segmentation","volume":"61","author":"Gonasalves","year":"2016","journal-title":"Expert Syst. Appl."},{"issue":"12","key":"10.1016\/j.compbiomed.2018.03.015_bib44","first-page":"3418","article-title":"Automated segmentation refinement of small lung nodules in ct scans by local shape analysis","volume":"58","author":"Diciotti","year":"2011","journal-title":"IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng."},{"key":"10.1016\/j.compbiomed.2018.03.015_bib45","series-title":"Information Processing in Medical Imaging","isbn-type":"print","doi-asserted-by":"crossref","first-page":"772","DOI":"10.1007\/978-3-642-22092-0_63","article-title":"3d shape analysis for early diagnosis of malignant lung nodules","author":"El-Baz","year":"2011","ISBN":"http:\/\/id.crossref.org\/isbn\/9783642220920"},{"issue":"1","key":"10.1016\/j.compbiomed.2018.03.015_bib46","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1177\/0954411915619951","article-title":"Three-dimensional lung nodule seg-mentation and shape variance analysis to detect lung cancer with reduced false positives","volume":"230","author":"Krishnamurthy","year":"2016","journal-title":"Journal of Engineering in Medicine"},{"key":"10.1016\/j.compbiomed.2018.03.015_bib47","series-title":"The 28th International Conference of the Jangjeon Mathematical Society ICJMS 2015","article-title":"Effects of chosen scalar products on gradient descent algorithms","author":"Goceri","year":"2015"},{"key":"10.1016\/j.compbiomed.2018.03.015_bib48","series-title":"Using Gradient Descent Method to Solve Systems of Differential Equations under the Sobolev Inner Product Space","author":"Hatton","year":"2017"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482518300726?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482518300726?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,12,28]],"date-time":"2018-12-28T22:02:01Z","timestamp":1546034521000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482518300726"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,5]]},"references-count":48,"alternative-id":["S0010482518300726"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2018.03.015","relation":{"has-preprint":[{"id-type":"doi","id":"10.20944\/preprints201904.0069.v1","asserted-by":"object"}]},"ISSN":["0010-4825"],"issn-type":[{"value":"0010-4825","type":"print"}],"subject":[],"published":{"date-parts":[[2018,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"3-D segmentation of lung nodules using hybrid level sets","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2018.03.015","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}