{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T06:54:52Z","timestamp":1726469692947},"reference-count":71,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,12,1]],"date-time":"2017-12-01T00:00:00Z","timestamp":1512086400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100002322","name":"CAPES","doi-asserted-by":"publisher","award":["33004153073P9"],"id":[{"id":"10.13039\/501100002322","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004901","name":"FAPEMIG","doi-asserted-by":"publisher","award":["APQ-02885-15"],"id":[{"id":"10.13039\/501100004901","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2017,12]]},"DOI":"10.1016\/j.compbiomed.2017.10.012","type":"journal-article","created":{"date-parts":[[2017,10,16]],"date-time":"2017-10-16T03:31:56Z","timestamp":1508124716000},"page":"135-147","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":29,"special_numbering":"C","title":["Features based on the percolation theory for quantification of non-Hodgkin lymphomas"],"prefix":"10.1016","volume":"91","author":[{"given":"Guilherme F.","family":"Roberto","sequence":"first","affiliation":[]},{"given":"Leandro A.","family":"Neves","sequence":"additional","affiliation":[]},{"given":"Marcelo Z.","family":"Nascimento","sequence":"additional","affiliation":[]},{"given":"Tha\u00edna A.A.","family":"Tosta","sequence":"additional","affiliation":[]},{"given":"Leonardo C.","family":"Longo","sequence":"additional","affiliation":[]},{"given":"Alessandro S.","family":"Martins","sequence":"additional","affiliation":[]},{"given":"Paulo R.","family":"Faria","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2017.10.012_bib1","unstructured":"A.C. Society, Cancer Statistics Center, https:\/\/cancerstatisticscenter.cancer.org, Accessed: 2017-02-09."},{"issue":"4","key":"10.1016\/j.compbiomed.2017.10.012_bib2","doi-asserted-by":"crossref","first-page":"1003","DOI":"10.1109\/TITB.2010.2050695","article-title":"Automatic classification of lymphoma images with transform-based global features","volume":"14","author":"Orlov","year":"2010","journal-title":"IEEE Trans. Inf. Technol. Biomed."},{"year":"2016","series-title":"Estimativa \u2014 2016-Incid\u00eancia de c\u00e2ncer no Brasil","author":"I. I. N. do C\u00e2ncer","key":"10.1016\/j.compbiomed.2017.10.012_bib3"},{"issue":"6","key":"10.1016\/j.compbiomed.2017.10.012_bib4","doi-asserted-by":"crossref","first-page":"604","DOI":"10.1002\/ajh.23176","article-title":"Mantle cell lymphoma: 2012 update on diagnosis, risk-stratification, and clinical management","volume":"87","author":"Vose","year":"2012","journal-title":"Am. J. Hematol."},{"issue":"2","key":"10.1016\/j.compbiomed.2017.10.012_bib5","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1007\/s00428-015-1864-y","article-title":"The heterogeneity of follicular lymphomas: from early development to transformation","volume":"468","author":"Xerri","year":"2016","journal-title":"Virchows Arch."},{"issue":"9","key":"10.1016\/j.compbiomed.2017.10.012_bib6","doi-asserted-by":"crossref","first-page":"803","DOI":"10.1002\/ajh.23491","article-title":"Chronic lymphocytic leukemia: 2013 update on diagnosis, risk stratification and treatment","volume":"88","author":"Hallek","year":"2013","journal-title":"Am. J. Hematol."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib7","unstructured":"F.P. de Souza Santos, G. dos Santos Fernandes, Linfomas n\u00e3o-Hodgkin, http:\/\/www.medicinanet.com.br\/conteudos\/revisoes\/99\/linfomas_nao_hodgkin.htm, Accessed: 2016-05-04."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib8","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1109\/4233.897058","article-title":"Computer-assisted discrimination among malignant lymphomas and leukemia using immunophenotyping, intelligent image repositories, and telemicroscopy","volume":"4","author":"Foran","year":"2000","journal-title":"IEEE Trans. Inf. Technol. Biomed."},{"issue":"4","key":"10.1016\/j.compbiomed.2017.10.012_bib9","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1007\/s10044-007-0066-x","article-title":"Classification of hematologic malignancies using texton signatures","volume":"10","author":"Tuzel","year":"2007","journal-title":"Pattern Analysis Appl."},{"issue":"9","key":"10.1016\/j.compbiomed.2017.10.012_bib10","doi-asserted-by":"crossref","first-page":"943","DOI":"10.1007\/s11517-008-0380-5","article-title":"IICBU 2008: a proposed benchmark suite for biological image analysis","volume":"46","author":"Shamir","year":"2008","journal-title":"Med. Biol. Eng. Comput."},{"issue":"11","key":"10.1016\/j.compbiomed.2017.10.012_bib11","doi-asserted-by":"crossref","first-page":"1684","DOI":"10.1016\/j.patrec.2008.04.013","article-title":"WND-CHARM: multi-purpose image classification using compound image transforms","volume":"29","author":"Orlov","year":"2008","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib12","series-title":"Multimedia (ISM), 2010 IEEE International Symposium on, IEEE","first-page":"145","article-title":"Histology image classification using supervised classification and multimodal fusion","author":"Meng","year":"2010"},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.012_bib13","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1186\/s12859-016-1318-9","article-title":"Bioimage classification with subcategory discriminant transform of high dimensional visual descriptors","volume":"17","author":"Song","year":"2016","journal-title":"BMC Bioinforma."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib14","series-title":"SPIE Medical Imaging, International Society for Optics and Photonics","article-title":"Lymphoma diagnosis in histopathology using a multi-stage visual learning approach","author":"Codella","year":"2016"},{"issue":"8","key":"10.1016\/j.compbiomed.2017.10.012_bib15","doi-asserted-by":"crossref","first-page":"10049","DOI":"10.1016\/j.eswa.2011.02.012","article-title":"A\u00a0hybrid method for MRI brain image classification","volume":"38","author":"Zhang","year":"2011","journal-title":"Expert Syst. Appl."},{"issue":"4","key":"10.1016\/j.compbiomed.2017.10.012_bib16","doi-asserted-by":"crossref","first-page":"1613","DOI":"10.1109\/TIP.2011.2180915","article-title":"Fast wavelet-based image characterization for highly adaptive image retrieval","volume":"21","author":"Quellec","year":"2012","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.012_bib17","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1109\/TMI.2010.2064333","article-title":"A\u00a0new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features","volume":"30","author":"Mar\u00edn","year":"2011","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib18","series-title":"SPIE Medical Imaging, International Society for Optics and Photonics","article-title":"Local binary pattern texture-based classification of solid masses in ultrasound breast images","author":"Matsumoto","year":"2012"},{"issue":"8","key":"10.1016\/j.compbiomed.2017.10.012_bib19","doi-asserted-by":"crossref","first-page":"819","DOI":"10.1016\/0031-3203(92)90036-I","article-title":"Performance evaluation for four classes of textural features","volume":"25","author":"Ohanian","year":"1992","journal-title":"Pattern Recognit."},{"issue":"(4","key":"10.1016\/j.compbiomed.2017.10.012_bib20","doi-asserted-by":"crossref","first-page":"634","DOI":"10.1016\/j.media.2009.05.003","article-title":"Fractal and multifractal analysis: a review","volume":"13","author":"Lopes","year":"2009","journal-title":"Med. Image Anal."},{"issue":"8","key":"10.1016\/j.compbiomed.2017.10.012_bib21","doi-asserted-by":"crossref","first-page":"1690","DOI":"10.1016\/j.patcog.2011.02.017","article-title":"Local fractal and multifractal features for volumic texture characterization","volume":"44","author":"Lopes","year":"2011","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib22","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.compag.2012.06.006","article-title":"Multifractal analysis and lacunarity analysis: a promising method for the automated assessment of muskmelon (Cucumis melo L.) epidermis netting","volume":"88","author":"Li","year":"2012","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib23","series-title":"Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE","first-page":"3427","article-title":"Detection of prostate cancer on histopathology using color fractals and Probabilistic Pairwise Markov models","author":"Yu","year":"2011"},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.012_bib24","doi-asserted-by":"crossref","first-page":"194-e1","DOI":"10.1016\/j.neurobiolaging.2010.04.010","article-title":"Age-related rarefaction in the fractal dimension of retinal vessel","volume":"33","author":"Azemin","year":"2012","journal-title":"Neurobiol. Aging"},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.012_bib25","first-page":"16","article-title":"Pixel intensity and fractal dimension of periapical lesions visually indiscernible in radiographs","volume":"39","author":"So\u011fur","year":"2013","journal-title":"J.\u00a0Endod."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib26","article-title":"Maximum entropy, fractal dimension and lacunarity in quantification of cellular rejection in myocardial biopsy of patients submitted to heart transplantation","volume":"vol. 285","author":"Neves","year":"2011"},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.012_bib27","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1007\/s00062-013-0273-3","article-title":"Age-and sex-related variations in the brain white matter fractal dimension throughout adulthood: an MRI study","volume":"25","author":"Farahibozorg","year":"2015","journal-title":"Clin. Neuroradiol."},{"issue":"12","key":"10.1016\/j.compbiomed.2017.10.012_bib28","doi-asserted-by":"crossref","first-page":"3375","DOI":"10.1109\/TBME.2013.2254486","article-title":"Epileptic seizure detection using lacunarity and Bayesian linear discriminant analysis in intracranial EEG","volume":"60","author":"Zhou","year":"2013","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"4","key":"10.1016\/j.compbiomed.2017.10.012_bib29","first-page":"7","article-title":"Fractal dimension and lacunarity of psoriatic lesions-A colour approach","volume":"6","author":"Ivanovici","year":"2009","journal-title":"Medicine"},{"issue":"11","key":"10.1016\/j.compbiomed.2017.10.012_bib30","doi-asserted-by":"crossref","first-page":"5017","DOI":"10.1016\/j.eswa.2014.02.048","article-title":"Multi-scale lacunarity as an alternative to quantify and diagnose the behavior of prostate cancer","volume":"41","author":"Neves","year":"2014","journal-title":"Expert Syst. Appl."},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.012_bib31","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1109\/TIP.2010.2059032","article-title":"Fractal dimension of color fractal images","volume":"20","author":"Ivanovici","year":"2011","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib32","series-title":"Image Processing (ICIP), 2009 16th IEEE International Conference on, IEEE","first-page":"453","article-title":"The lacunarity of colour fractal images","author":"Ivanovici","year":"2009"},{"issue":"14","key":"10.1016\/j.compbiomed.2017.10.012_bib33","first-page":"3683","article-title":"Fractals and cancer","volume":"60","author":"Baish","year":"2000","journal-title":"Cancer Res."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib34","series-title":"Control Systems and Computer Science (CSCS), 2013 19th International Conference on, IEEE","first-page":"345","article-title":"Characterization of tumor angiogenesis using fractal measures","author":"Ichim","year":"2013"},{"key":"10.1016\/j.compbiomed.2017.10.012_bib35","series-title":"V\u00a0Latin American Congress on Biomedical Engineering CLAIB 2011 May 16-21, 2011","first-page":"272","article-title":"Aprendizado de M\u00e1quina Simb\u00f3lico e T\u00e9cnicas Fractais Para Caracterizar Rejei\u00e7\u00e3o em Bi\u00f3psia Mioc\u00e1rdica","author":"Carvalho","year":"2013"},{"key":"10.1016\/j.compbiomed.2017.10.012_bib36","series-title":"Scaling Phenomena in Disordered Systems","first-page":"1","article-title":"Random fractals: characterization and measurement","author":"Voss","year":"1991"},{"issue":"7","key":"10.1016\/j.compbiomed.2017.10.012_bib37","doi-asserted-by":"crossref","first-page":"833","DOI":"10.1088\/0034-4885\/43\/7\/001","article-title":"Percolation theory","volume":"43","author":"Essam","year":"1980","journal-title":"Rep. Prog. Phys."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib38","first-page":"397","article-title":"A\u00a0new Monte Carlo method for percolation problems on a lattice","volume":"vol. 59","author":"Dean","year":"1963"},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.012_bib39","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.geoderma.2009.10.009","article-title":"Multiscale percolation properties of a fractal pore network","volume":"160","author":"Bird","year":"2010","journal-title":"Geoderma"},{"issue":"6","key":"10.1016\/j.compbiomed.2017.10.012_bib40","doi-asserted-by":"crossref","first-page":"545","DOI":"10.1103\/PhysRevLett.56.545","article-title":"Test of scaling exponents for percolation-cluster perimeters","volume":"56","author":"Ziff","year":"1986","journal-title":"Phys. Rev. Lett."},{"issue":"8","key":"10.1016\/j.compbiomed.2017.10.012_bib41","doi-asserted-by":"crossref","first-page":"3438","DOI":"10.1103\/PhysRevB.14.3438","article-title":"Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm","volume":"14","author":"Hoshen","year":"1976","journal-title":"Phys. Rev. B"},{"key":"10.1016\/j.compbiomed.2017.10.012_bib42","series-title":"Optimization of Electrical and Electronic Equipment (OPTIM), 2012 13th International Conference on, IEEE","first-page":"1401","article-title":"Psoriasis image analysis using color lacunarity","author":"C\u0103liman","year":"2012"},{"key":"10.1016\/j.compbiomed.2017.10.012_bib43","unstructured":"N.C. Institute, http:\/\/www.cancer.gov\/, Accessed: 2016-05-13."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib44","unstructured":"N.I. on Aging, https:\/\/www.nia.nih.gov\/, Accessed: 2016-05-13."},{"issue":"4","key":"10.1016\/j.compbiomed.2017.10.012_bib45","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1016\/j.compbiomed.2009.12.006","article-title":"Contourlet-based mammography mass classification using the SVM family","volume":"40","author":"Moayedi","year":"2010","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib46","first-page":"108","article-title":"K*: an instance-based learner using an entropic distance measure","volume":"vol. 5","author":"Cleary","year":"1995"},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.012_bib47","doi-asserted-by":"crossref","first-page":"191","DOI":"10.2307\/2347628","article-title":"Ridge estimators in logistic regression","volume":"41","author":"le Cessie","year":"1992","journal-title":"Appl. Stat."},{"issue":"14","key":"10.1016\/j.compbiomed.2017.10.012_bib48","doi-asserted-by":"crossref","first-page":"2627","DOI":"10.1016\/S1352-2310(97)00447-0","article-title":"Artificial neural networks (the multilayer perceptron) a review of applications in the atmospheric sciences","volume":"32","author":"Gardner","year":"1998","journal-title":"Atmos. Environ."},{"year":"1996","series-title":"Introduction to Radial Basis Function Networks","author":"Orr","key":"10.1016\/j.compbiomed.2017.10.012_bib49"},{"key":"10.1016\/j.compbiomed.2017.10.012_bib50","first-page":"505","article-title":"Constructing diverse classifier ensembles using artificial training examples","volume":"vol. 3","author":"Melville","year":"2003"},{"year":"1998","series-title":"Additive Logistic Regression: a Statistical View of Boosting","author":"Friedman","key":"10.1016\/j.compbiomed.2017.10.012_bib51"},{"key":"10.1016\/j.compbiomed.2017.10.012_bib52","unstructured":"E. Frank, L. Trigg, R. Kirkby, MultiClass Classifier, http:\/\/weka.sourceforge.net\/doc.dev\/weka\/classifiers\/meta\/MultiClassClassifier.html, Accessed: 2016-01-19."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib53","unstructured":"E. Frank, Random Committee, http:\/\/weka.sourceforge.net\/doc.dev\/weka\/classifiers\/meta\/RandomCommittee.html, Accessed: 2016-01-19."},{"issue":"10","key":"10.1016\/j.compbiomed.2017.10.012_bib54","doi-asserted-by":"crossref","first-page":"1619","DOI":"10.1109\/TPAMI.2006.211","article-title":"Rotation forest: a new classifier ensemble method","volume":"28","author":"Rodriguez","year":"2006","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.012_bib55","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib56","series-title":"CAINE","first-page":"176","article-title":"Lazy classifiers using P-trees","author":"Perrizo","year":"2002"},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.012_bib57","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1145\/234313.234346","article-title":"Learning decision tree classifiers","volume":"28","author":"Quinlan","year":"1996","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"10.1016\/j.compbiomed.2017.10.012_bib58","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1016\/j.eswa.2017.03.051","article-title":"Computational method for unsupervised segmentation of lymphoma histological images based on fuzzy 3-partition entropy and genetic algorithm","volume":"81","author":"Tosta","year":"2017","journal-title":"Expert Syst. Appl."},{"issue":"18","key":"10.1016\/j.compbiomed.2017.10.012_bib59","doi-asserted-by":"crossref","first-page":"7331","DOI":"10.1016\/j.eswa.2013.06.079","article-title":"Unsupervised segmentation method for cuboidal cell nuclei in histological prostate images based on minimum cross entropy","volume":"40","author":"De Oliveira","year":"2013","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib60","series-title":"Bioinformatics and Bioengineering (BIBE), 2013 IEEE 13th International Conference on, IEEE","first-page":"1","article-title":"Towards generalized nuclear segmentation in histological images","author":"Vahadane","year":"2013"},{"key":"10.1016\/j.compbiomed.2017.10.012_bib61","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1038\/srep00503","article-title":"Detection and segmentation of cell nuclei in virtual microscopy images: a minimum-model approach","volume":"2","author":"Wienert","year":"2012","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib62","series-title":"Pattern Recognition (ICPR), 2010 20th International Conference on, IEEE","first-page":"273","article-title":"An image analysis approach for detecting malignant cells in digitized h&e-stained histology images of follicular lymphoma","author":"Sertel","year":"2010"},{"issue":"Dec","key":"10.1016\/j.compbiomed.2017.10.012_bib63","first-page":"2677","article-title":"An extension on\u201cstatistical comparisons of classifiers over multiple data sets\u201dfor all pairwise comparisons","volume":"9","author":"Garcia","year":"2008","journal-title":"J.\u00a0Mach. Learn. Res."},{"issue":"Jan","key":"10.1016\/j.compbiomed.2017.10.012_bib64","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","volume":"7","author":"Dem\u0161ar","year":"2006","journal-title":"J.\u00a0Mach. Learn. Res."},{"issue":"12","key":"10.1016\/j.compbiomed.2017.10.012_bib65","doi-asserted-by":"crossref","first-page":"2428","DOI":"10.1103\/PhysRevLett.75.2428","article-title":"Scale-invariant behavior and vascular network formation in normal and tumor tissue","volume":"75","author":"Gazit","year":"1995","journal-title":"Phys. Rev. Lett."},{"issue":"3","key":"10.1016\/j.compbiomed.2017.10.012_bib66","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1006\/mvre.1996.0031","article-title":"Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model","volume":"51","author":"Baish","year":"1996","journal-title":"Microvasc. Res."},{"issue":"5","key":"10.1016\/j.compbiomed.2017.10.012_bib67","doi-asserted-by":"crossref","first-page":"480","DOI":"10.1115\/1.2835076","article-title":"Dynamic contrast-enhanced MRI and fractal characteristics of percolation clusters in two-dimensional tumor blood perfusion","volume":"121","author":"Craciunescu","year":"1999","journal-title":"J.\u00a0Biomech. Eng."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib68","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1023\/A:1012487302797","article-title":"Gene selection for cancer classification using support vector machines","volume":"46","author":"Guyon","year":"2002","journal-title":"Mach. Learn."},{"key":"10.1016\/j.compbiomed.2017.10.012_bib69","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.neucom.2015.01.068","article-title":"Coupling different methods for overcoming the class imbalance problem","volume":"158","author":"Nanni","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compbiomed.2017.10.012_bib70","doi-asserted-by":"crossref","unstructured":"C.L. Chen, A. Mahjoubfar, L.-C. Tai, I.K. Blaby, A. Huang, K.R. Niazi, B. Jalali, Deep learning in label-free cell classification, Sci. Rep. 6.","DOI":"10.1038\/srep21471"},{"key":"10.1016\/j.compbiomed.2017.10.012_bib71","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.inffus.2016.05.003","article-title":"Overview of the combination of biometric matchers","volume":"33","author":"Lumini","year":"2017","journal-title":"Inf. Fusion"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482517303384?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482517303384?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,12,3]],"date-time":"2019-12-03T05:46:58Z","timestamp":1575352018000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482517303384"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,12]]},"references-count":71,"alternative-id":["S0010482517303384"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2017.10.012","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2017,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Features based on the percolation theory for quantification of non-Hodgkin lymphomas","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2017.10.012","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}