{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T06:54:53Z","timestamp":1726469693694},"reference-count":61,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,12,1]],"date-time":"2017-12-01T00:00:00Z","timestamp":1512086400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2018,10,12]],"date-time":"2018-10-12T00:00:00Z","timestamp":1539302400000},"content-version":"am","delay-in-days":315,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61502091","71325002","61225012"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["61502091","71325002","61225012"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100005153","name":"China National Funds for Distinguished Young Scientists","doi-asserted-by":"publisher","award":["61502091","71325002","61225012"],"id":[{"id":"10.13039\/501100005153","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2017,12]]},"DOI":"10.1016\/j.compbiomed.2017.10.002","type":"journal-article","created":{"date-parts":[[2017,10,12]],"date-time":"2017-10-12T00:46:33Z","timestamp":1507769193000},"page":"21-37","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":44,"special_numbering":"C","title":["Nonlinearity-aware based dimensionality reduction and over-sampling for AD\/MCI classification from MRI measures"],"prefix":"10.1016","volume":"91","author":[{"given":"Peng","family":"Cao","sequence":"first","affiliation":[]},{"given":"Xiaoli","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jinzhu","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Dazhe","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Min","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Jian","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Osmar","family":"Zaiane","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"11","key":"10.1016\/j.compbiomed.2017.10.002_bib1","doi-asserted-by":"crossref","first-page":"1097","DOI":"10.1001\/archneur.1985.04060100083029","article-title":"Diagnosis of Alzheimer's disease","volume":"42","author":"Khacha","year":"1985","journal-title":"Archives Neurol."},{"issue":"4","key":"10.1016\/j.compbiomed.2017.10.002_bib2","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1016\/j.jalz.2016.03.001","article-title":"2016 Alzheimer's disease facts and figures","volume":"12","author":"Alzheimer\u2019s Association and others","year":"2016","journal-title":"Alzheimer\u2019s Dementia"},{"issue":"3","key":"10.1016\/j.compbiomed.2017.10.002_bib3","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1016\/j.jalz.2012.06.004","article-title":"Standardization of analysis sets for reporting results from ADNI MRI data","volume":"9","author":"Wyman","year":"2013","journal-title":"Alzheimer\u2019s Dementia"},{"issue":"5","key":"10.1016\/j.compbiomed.2017.10.002_bib4","doi-asserted-by":"crossref","first-page":"808","DOI":"10.1016\/j.media.2014.04.006","article-title":"Multiple instance learning for classification of dementia in brain MRI","volume":"18","author":"Tong","year":"2014","journal-title":"Med. image Anal."},{"issue":"10","key":"10.1016\/j.compbiomed.2017.10.002_bib5","doi-asserted-by":"crossref","first-page":"1313","DOI":"10.1016\/j.compbiomed.2013.07.004","article-title":"Classification of diffusion tensor images for the early detection of Alzheimer's disease","volume":"43","author":"Lee","year":"2013","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2017.10.002_bib6","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.compbiomed.2017.02.011","article-title":"Classification of Alzheimer's disease and prediction of mild cognitive impairment-to-Alzheimer\u2019s conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm","volume":"83","author":"Beheshti","year":"2017","journal-title":"Comput. Biol. Med."},{"issue":"12","key":"10.1016\/j.compbiomed.2017.10.002_bib7","doi-asserted-by":"crossref","first-page":"3411","DOI":"10.1002\/hbm.22156","article-title":"Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns","volume":"34","author":"Wee","year":"2013","journal-title":"Hum. Brain Mapp."},{"issue":"3","key":"10.1016\/j.compbiomed.2017.10.002_bib8","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1109\/TBME.2015.2466616","article-title":"Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification","volume":"63","author":"Zhu","year":"2010","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.002_bib9","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.nicl.2012.10.002","article-title":"Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease","volume":"1","author":"Coup\u00e9","year":"2012","journal-title":"NeuroImage Clin."},{"key":"10.1016\/j.compbiomed.2017.10.002_bib10","doi-asserted-by":"crossref","first-page":"1208","DOI":"10.1016\/j.compbiomed.2015.07.006","article-title":"Probability distribution function-based classification of structural MRI for the detection of Alzheimer's disease","volume":"64","author":"Beheshti","year":"2015","journal-title":"Comput. Biol. Med."},{"issue":"9","key":"10.1016\/j.compbiomed.2017.10.002_bib11","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1109\/TKDE.2008.239","article-title":"Learning from imbalanced data","volume":"21","author":"He","year":"2009","journal-title":"IEEE Trans. Knowl. data Eng."},{"key":"10.1016\/j.compbiomed.2017.10.002_bib12","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.neucom.2016.02.006","article-title":"A\u00a0new sampling method for classifying imbalanced data based on support vector machine ensemble","volume":"193","author":"Jian","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib13","series-title":"Pacific-asia Conference on Knowledge Discovery and Data Mining","first-page":"280","article-title":"An optimized cost-sensitive SVM for imbalanced data learning","author":"Cao","year":"2013"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib14","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1016\/j.ins.2014.07.015","article-title":"Feature selection for high-dimensional class-imbalanced data sets using Support Vector Machines","volume":"286","author":"Maldonado","year":"2014","journal-title":"Inf. Sci."},{"key":"10.1016\/j.compbiomed.2017.10.002_bib15","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.neuroimage.2013.10.005","article-title":"Analysis of sampling techniques for imbalanced data: an n= 648 ADNI study","volume":"87","author":"Dubey","year":"2014","journal-title":"NeuroImage"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib16","first-page":"2211","article-title":"Multiple kernel learning algorithms","volume":"12","author":"G\u00f6nen","year":"2011","journal-title":"IEEE Trans. Med. imaging"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib17","first-page":"2491","article-title":"SimpleMKL","volume":"9","author":"Rakotomamonjy","year":"2008","journal-title":"J.\u00a0Mach. Learn. Res."},{"issue":"5","key":"10.1016\/j.compbiomed.2017.10.002_bib18","doi-asserted-by":"crossref","first-page":"1241","DOI":"10.1109\/TNNLS.2016.2527796","article-title":"Robust Regularization Path Algorithm for v-Support Vector Classification.","volume":"28","author":"Gu","year":"2016","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"7","key":"10.1016\/j.compbiomed.2017.10.002_bib19","doi-asserted-by":"crossref","first-page":"1403","DOI":"10.1109\/TNNLS.2014.2342533","article-title":"Incremental support vector learning for ordinal regression","volume":"26","author":"Gu","year":"2015","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.compbiomed.2017.10.002_bib20","series-title":"International Joint Conference on Neural Networks","first-page":"717","article-title":"Representation and feature selection using multiple kernel learning","author":"Dileep","year":"2009"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib21","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.neuroimage.2013.06.033","article-title":"Locally linear embedding (LLE) for MRI based Alzheimer's disease classification","volume":"83","author":"Liu","year":"2013","journal-title":"NeuroImage"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib22","doi-asserted-by":"crossref","first-page":"570","DOI":"10.1016\/j.patcog.2016.09.023","article-title":"manifold learning: application to AD risk assessment","volume":"63","author":"Guerrero","year":"2016","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.002_bib23","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1471-2377-12-46","article-title":"Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data","volume":"12","author":"Ye","year":"2012","journal-title":"BMC Neurol."},{"key":"10.1016\/j.compbiomed.2017.10.002_bib24","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","article-title":"Regression shrinkage and selection via the lasso","author":"Tibshirani","year":"1996","journal-title":"J.\u00a0R. Stat. Soc. Ser. B Methodol."},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.002_bib25","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1111\/j.1467-9868.2007.00627.x","article-title":"The group lasso for logistic regression","volume":"70","author":"Meier","year":"2008","journal-title":"J.\u00a0R. Stat. Soc. Ser. B Methodol."},{"issue":"7","key":"10.1016\/j.compbiomed.2017.10.002_bib26","doi-asserted-by":"crossref","first-page":"1475","DOI":"10.1109\/TMI.2014.2314712","article-title":"Identifying the neuroanatomical basis of cognitive impairment in Alzheimer's disease by correlation-and nonlinearity-aware sparse Bayesian learning","volume":"33","author":"Wan","year":"2014","journal-title":"IEEE Trans. Med. imaging"},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.002_bib27","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1109\/TPAMI.2007.250598","article-title":"Graph embedding and extensions: a general framework for dimensionality reduction","volume":"29","author":"Yan","year":"2007","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compbiomed.2017.10.002_bib28","series-title":"International Conference on Machine Learning","first-page":"118","article-title":"On p-norm path following in multiple kernel learning for non-linear feature selection","author":"Jawanpuria","year":"2007"},{"issue":"7","key":"10.1016\/j.compbiomed.2017.10.002_bib29","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1109\/34.598228","article-title":"Eigenfaces vs. fisherfaces: recognition using class specific linear projection","volume":"19","author":"Belhumeur","year":"1997","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compbiomed.2017.10.002_bib30","series-title":"IEEE International Conference on Computer Vision (ICCV\u201905)","first-page":"1208","article-title":"Neighborhood preserving embedding","volume":"vol. 2","author":"Scholkopf","year":"2005"},{"year":"2002","series-title":"Learning with Kernels: Support Vector Machines,regularization, Optimization and beyond","author":"He","key":"10.1016\/j.compbiomed.2017.10.002_bib31"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib32","series-title":"IEEE International Conference on Computer Vision and Pattern Recognition","first-page":"1","article-title":"Trace ratio vs. ratio trace for dimensionality reduction","author":"Wang","year":"2007"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib33","first-page":"27","article-title":"Learning the kernel matrix with semidefinite programming","volume":"5","author":"Lanckriet","year":"2004","journal-title":"J.\u00a0Mach. Learn. Res."},{"year":"2004","series-title":"Convex Optimization","author":"Boyd","key":"10.1016\/j.compbiomed.2017.10.002_bib34"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib35","first-page":"425","volume":"6064","author":"Rathi","year":"2006","journal-title":"Statistical Shape Analysis using Kernel PCA"},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.002_bib36","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1471-2105-11-S11-S1","article-title":"L2-norm multiple kernel learning and its application to biomedical data fusion","volume":"11","author":"Yu","year":"2010","journal-title":"BMC Bioinforma."},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.002_bib37","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1613\/jair.953","article-title":"SMOTE: synthetic minority over-sampling technique","volume":"16","author":"Chawla","year":"2002","journal-title":"J.\u00a0Artif. Intell. Res."},{"issue":"6","key":"10.1016\/j.compbiomed.2017.10.002_bib38","doi-asserted-by":"crossref","first-page":"1147","DOI":"10.1109\/TPAMI.2010.183","article-title":"Multiple kernel learning for dimensionality reduction","volume":"33","author":"Lin","year":"2011","journal-title":"Pattern Anal. Mach. Intell."},{"issue":"3","key":"10.1016\/j.compbiomed.2017.10.002_bib39","doi-asserted-by":"crossref","first-page":"968","DOI":"10.1016\/j.neuroimage.2006.01.021","article-title":"An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest","volume":"31","author":"Desikan","year":"2006","journal-title":"Neuroimage"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib40","series-title":"IJCAI Proceedings-international Joint Conference on Artificial Intelligence","first-page":"1294","article-title":"Joint feature selection and subspace learning","volume":"vol. 22","author":"Gu","year":"2011"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib41","series-title":"Proceedings-international Joint Conference on Artificial Intelligence","first-page":"182","article-title":"Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment","volume":"vol. 122","author":"Xu","year":"2015"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib42","series-title":"5th Workshop on Data Mining for Medicine and Healthcare","first-page":"49","article-title":"Multi-task spare group lasso for characterizing alzheimers disease","author":"Liu","year":"2016"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib43","doi-asserted-by":"crossref","first-page":"S185","DOI":"10.1016\/j.neurobiolaging.2014.07.045","article-title":"Cortical surface biomarkers for predicting cognitive outcomes using group l2,1 norm","volume":"36","author":"Yan","year":"2015","journal-title":"Neurobiol. aging"},{"issue":"4","key":"10.1016\/j.compbiomed.2017.10.002_bib44","doi-asserted-by":"crossref","first-page":"1045","DOI":"10.3233\/JAD-151010","article-title":"Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers","volume":"51","author":"Xu","year":"2016","journal-title":"J.\u00a0Alzheimer\u2019s Dis."},{"issue":"4","key":"10.1016\/j.compbiomed.2017.10.002_bib45","first-page":"491","article-title":"Medial temporal lobe atrophy predicts Alzheimer's disease in patients with minor cognitive impairment","volume":"72","author":"Visser","year":"2002","journal-title":"J.\u00a0Neurol., Neurosurg. Psychiatry"},{"issue":"3","key":"10.1016\/j.compbiomed.2017.10.002_bib46","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1109\/TBME.2015.2466616","article-title":"Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification","volume":"63","author":"Zhu","year":"2016","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.compbiomed.2017.10.002_bib47","doi-asserted-by":"crossref","first-page":"S69","DOI":"10.1016\/j.neurobiolaging.2014.05.038","article-title":"Empowering imaging biomarkers of Alzheimer's disease","volume":"36","author":"Gutman","year":"2015","journal-title":"Neurobiol. aging"},{"issue":"3\u20134","key":"10.1016\/j.compbiomed.2017.10.002_bib48","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1007\/s00429-010-0283-8","article-title":"Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer's disease","volume":"215","author":"Ech\u00e1varri","year":"2011","journal-title":"Brain Struct. Funct."},{"issue":"1","key":"10.1016\/j.compbiomed.2017.10.002_bib49","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1002\/hipo.450010102","article-title":"Entorhinal cortex pathology in Alzheimer's disease","volume":"1","author":"Hoesen","year":"1991","journal-title":"Hippocampus"},{"issue":"8","key":"10.1016\/j.compbiomed.2017.10.002_bib50","doi-asserted-by":"crossref","first-page":"1304","DOI":"10.1016\/j.neurobiolaging.2010.04.026","article-title":"Subregions of the inferior parietal lobule are affected in the progression to Alzheimer's disease","volume":"31","author":"Greene","year":"2010","journal-title":"Neurobiol. aging"},{"issue":"2","key":"10.1016\/j.compbiomed.2017.10.002_bib51","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1590\/S1980-57642009DN20100008","article-title":"Hippocampal atrophy and verbal episodic memory performance in amnestic mild cognitive impairment and mild Alzheimer's disease: a preliminary study","volume":"2","author":"Marchiani","year":"2008","journal-title":"Dement. E Neuropsychol."},{"issue":"2","key":"10.1016\/j.compbiomed.2017.10.002_bib52","doi-asserted-by":"crossref","first-page":"708","DOI":"10.1016\/j.neuroimage.2004.07.006","article-title":"Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease","volume":"23","author":"Karas","year":"2004","journal-title":"Neuroimage"},{"issue":"2","key":"10.1016\/j.compbiomed.2017.10.002_bib53","doi-asserted-by":"crossref","first-page":"e0138866","DOI":"10.1371\/journal.pone.0138866","article-title":"Predicting progression from mild cognitive impairment to Alzheimer's dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification","volume":"11","author":"Korolev","year":"2016","journal-title":"PLoS One"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib54","series-title":"International Conference on Medical Image Computing & Computer-assisted Intervention","first-page":"82","article-title":"Domain transfer learning for MCI conversion prediction","author":"Bo","year":"2012"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib55","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.neuroimage.2013.03.073","article-title":"Modeling disease progression via multi-task learning","volume":"78","author":"Zhou","year":"2013","journal-title":"Neuroimage"},{"key":"10.1016\/j.compbiomed.2017.10.002_bib56","series-title":"ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"814","article-title":"A\u00a0multi-task learning formulation for predicting disease progression","author":"Zhou","year":"2011"},{"issue":"6","key":"10.1016\/j.compbiomed.2017.10.002_bib57","first-page":"168","article-title":"Subclass-based multi-task learning for Alzheimer's disease diagnosis","volume":"6","author":"Suk","year":"2014","journal-title":"Front. Aging Neurosci."},{"key":"10.1016\/j.compbiomed.2017.10.002_bib58","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.patcog.2017.07.018","article-title":"Sparse shared structure based multi-task learning for MRI based Cognitive Performance prediction of Alzheimers disease","volume":"72","author":"Cao","year":"2017","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.compbiomed.2017.10.002_bib59","series-title":"Third International Workshop, MBIA 2013, Held in Conjunction with MICCAI 2013","first-page":"8159","article-title":"Network-guided sparse learning for predicting cognitive outcomes from MRI measures, multimodal brain image analysis","author":"Yan","year":"2013"},{"issue":"3","key":"10.1016\/j.compbiomed.2017.10.002_bib60","doi-asserted-by":"crossref","first-page":"984","DOI":"10.1109\/JBHI.2013.2285378","article-title":"Multiple kernel learning in the primal for multimodal Alzheimer's disease classification","volume":"18","author":"Liu","year":"2014","journal-title":"IEEE J. Biomed. health Inf."},{"issue":"3","key":"10.1016\/j.compbiomed.2017.10.002_bib61","doi-asserted-by":"crossref","first-page":"778","DOI":"10.1109\/JBHI.2016.2538559","article-title":"D.A. Morales, L. Alonso-Nanclares. Voxel- based diagnosis of Alzheimer\u2019s disease using classifier ensembles","volume":"21","author":"Armananzas","year":"2017","journal-title":"IEEE J. Biomed. Health Info."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482517303220?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482517303220?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,27]],"date-time":"2024-06-27T17:57:09Z","timestamp":1719511029000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482517303220"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,12]]},"references-count":61,"alternative-id":["S0010482517303220"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2017.10.002","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2017,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Nonlinearity-aware based dimensionality reduction and over-sampling for AD\/MCI classification from MRI measures","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2017.10.002","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}