{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,30]],"date-time":"2024-08-30T00:27:44Z","timestamp":1724977664113},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,4,1]],"date-time":"2017-04-01T00:00:00Z","timestamp":1491004800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100004663","name":"Ministry of Science and Technology, Taiwan","doi-asserted-by":"publisher","award":["104-2218-E-038-004","103-2314-B-038-067","105-2314-B-038-049"],"id":[{"id":"10.13039\/501100004663","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004700","name":"Taipei Medical University","doi-asserted-by":"publisher","award":["104-AE1-B04"],"id":[{"id":"10.13039\/501100004700","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","computersinbiologyandmedicine.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2017,4]]},"DOI":"10.1016\/j.compbiomed.2017.02.012","type":"journal-article","created":{"date-parts":[[2017,2,27]],"date-time":"2017-02-27T22:30:52Z","timestamp":1488234652000},"page":"102-108","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":52,"special_numbering":"C","title":["Quantitative glioma grading using transformed gray-scale invariant textures of MRI"],"prefix":"10.1016","volume":"83","author":[{"given":"Kevin","family":"Li-Chun Hsieh","sequence":"first","affiliation":[]},{"given":"Cheng-Yu","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Chung-Ming","family":"Lo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2017.02.012_bib1","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1007\/s00401-007-0243-4","article-title":"The 2007 WHO classification of tumours of the central nervous system","volume":"114","author":"Louis","year":"2007","journal-title":"Acta Neuropathol."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib2","doi-asserted-by":"crossref","first-page":"803","DOI":"10.1007\/s00401-016-1545-1","article-title":"The 2016 world health organization classification of tumors of the central nervous system: a summary","volume":"131","author":"Louis","year":"2016","journal-title":"Acta Neuropathol."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib3","doi-asserted-by":"crossref","first-page":"2481","DOI":"10.1056\/NEJMoa1402121","article-title":"Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas","volume":"372","author":"Brat","year":"2015","journal-title":"N. Engl. J. Med."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib4","doi-asserted-by":"crossref","first-page":"2499","DOI":"10.1056\/NEJMoa1407279","article-title":"Glioma groups based on 1p\/19q, IDH, and TERT promoter mutations in tumors","volume":"372","author":"Eckel-Passow","year":"2015","journal-title":"N. Engl. J. Med."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib5","doi-asserted-by":"crossref","first-page":"479","DOI":"10.1093\/jnen\/64.6.479","article-title":"Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas","volume":"64","author":"Ohgaki","year":"2005","journal-title":"J. Neuropathol. Exp. Neurol."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib6","doi-asserted-by":"crossref","first-page":"1106","DOI":"10.1002\/1097-0142(19850901)56:5<1106::AID-CNCR2820560525>3.0.CO;2-2","article-title":"Glioblastoma multiforme and anaplastic astrocytoma pathologic criteria and prognostic implications","volume":"56","author":"Burger","year":"1985","journal-title":"Cancer"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib7","doi-asserted-by":"crossref","first-page":"1381","DOI":"10.1002\/(SICI)1097-0142(19970401)79:7<1381::AID-CNCR16>3.0.CO;2-W","article-title":"Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas","volume":"79","author":"Coons","year":"1997","journal-title":"Cancer"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib8","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1002\/glia.440150303","article-title":"Histopathology, classification, and grading of gliomas","volume":"15","author":"Kleihues","year":"1995","journal-title":"Glia"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib9","doi-asserted-by":"crossref","first-page":"1477","DOI":"10.1002\/(SICI)1097-0142(20000315)88:6<1477::AID-CNCR28>3.0.CO;2-8","article-title":"Limitations of the World Health Organization classification of childhood supratentorial astrocytic tumors","volume":"88","author":"Gilles","year":"2000","journal-title":"Cancer"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib10","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/S0022-510X(00)00274-4","article-title":"Interobserver reproducibility among neuropathologists and surgical pathologists in fibrillary astrocytoma grading","volume":"175","author":"Prayson","year":"2000","journal-title":"J. Neurol. Sci."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib11","doi-asserted-by":"crossref","first-page":"328","DOI":"10.5414\/NP300404","article-title":"Peripheral compressing artifacts in brain tissue from stereotactic biopsy with sidecutting biopsy needle: a pitfall for adequate glioma grading","volume":"30","author":"Kim","year":"2010","journal-title":"Clin. Neuropathol."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib12","doi-asserted-by":"crossref","first-page":"826","DOI":"10.3171\/jns.1989.71.6.0826","article-title":"National survey of patterns of care for brain-tumor patients","volume":"71","author":"Mahaley","year":"1989","journal-title":"J. Neurosurg."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib13","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s40644-014-0035-8","article-title":"Added value of advanced over conventional magnetic resonance imaging in grading gliomas and other primary brain tumors","volume":"14","author":"Guzm\u00e1n-De-Villoria","year":"2014","journal-title":"Cancer Imaging"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib14","doi-asserted-by":"crossref","first-page":"e0164268","DOI":"10.1371\/journal.pone.0164268","article-title":"Introduction of high throughput magnetic resonance T2-weighted image texture analysis for WHO grade 2 and 3 gliomas","volume":"11","author":"Kinoshita","year":"2016","journal-title":"PLoS One"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib15","doi-asserted-by":"crossref","first-page":"e108335","DOI":"10.1371\/journal.pone.0108335","article-title":"Glioma: application of whole-tumor texture analysis of diffusion-weighted imaging for the evaluation of tumor heterogeneity","volume":"9","author":"Ryu","year":"2014","journal-title":"PLoS One"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib16","doi-asserted-by":"crossref","first-page":"3449","DOI":"10.1158\/1078-0432.CCR-07-0238","article-title":"Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging","volume":"13","author":"Jackson","year":"2007","journal-title":"Clin. Cancer Res."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib17","doi-asserted-by":"crossref","first-page":"3444","DOI":"10.1158\/1078-0432.CCR-07-0936","article-title":"Imaging update: new windows, new views","volume":"13","author":"Blasberg","year":"2007","journal-title":"Clin. Cancer Res."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib18","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1007\/s00234-011-0846-2","article-title":"Grading of supratentorial astrocytic tumors by using the difference of ADC value","volume":"53","author":"Bai","year":"2011","journal-title":"Neuroradiology"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib19","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.cmpb.2013.03.017","article-title":"Computer-aided diagnosis of breast masses using quantified BI-RADS findings","volume":"111","author":"Moon","year":"2013","journal-title":"Comput. Methods Prog. Biomed."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib20","doi-asserted-by":"crossref","first-page":"354","DOI":"10.1016\/j.cmpb.2015.09.004","article-title":"Quantitative breast lesion classification based on multichannel distributions in shear-wave imaging","volume":"122","author":"Lo","year":"2015","journal-title":"Comput. Methods Prog. Biomed."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib21","doi-asserted-by":"crossref","first-page":"2039","DOI":"10.1016\/j.ultrasmedbio.2015.03.003","article-title":"Intensity-invariant texture analysis for classification of bi-rads category 3 breast masses","volume":"41","author":"Lo","year":"2015","journal-title":"Ultrasound Med. Biol."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib22","doi-asserted-by":"crossref","first-page":"1531","DOI":"10.1002\/mrm.24790","article-title":"Cellular imaging and texture analysis distinguish differences in cellular dynamics in mouse brain tumors","volume":"71","author":"Gazdzinski","year":"2014","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib23","doi-asserted-by":"crossref","first-page":"e0141506","DOI":"10.1371\/journal.pone.0141506","article-title":"MRI and texture analysis to visualize spatial histologic heterogeneity and tumor extent in glioblastoma","volume":"10","author":"Hu","year":"2015","journal-title":"PLoS One"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib24","doi-asserted-by":"crossref","unstructured":"T. Ojala, M. Pietik\u00e4inen, T. M\u00e4enp\u00e4\u00e4, Gray scale and rotation invariant texture classification with local binary patterns, Computer Vision-ECCV2000, Springer, 2000, pp. 404\u2013420.","DOI":"10.1007\/3-540-45054-8_27"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib25","doi-asserted-by":"crossref","first-page":"1061","DOI":"10.1038\/nature07385","article-title":"Comprehensive genomic characterization defines human glioblastoma genes and core pathways","volume":"455","author":"McLendon","year":"2008","journal-title":"Nature"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib26","doi-asserted-by":"crossref","first-page":"1503","DOI":"10.1109\/TMI.2014.2315206","article-title":"Multi-dimensional tumor detection in automated whole breast ultrasound using topographic watershed","volume":"33","author":"Lo","year":"2014","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib27","doi-asserted-by":"crossref","first-page":"1893","DOI":"10.1007\/s00521-011-0586-6","article-title":"Local directional derivative pattern for rotation invariant texture classification","volume":"21","author":"Guo","year":"2012","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib28","doi-asserted-by":"crossref","first-page":"391","DOI":"10.2307\/2987742","article-title":"Measuring skewness and kurtosis","author":"Groeneveld","year":"1984","journal-title":"Statistician"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib29","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1148\/radiol.12112120","article-title":"Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas","volume":"264","author":"Baek","year":"2012","journal-title":"Radiology"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib30","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1109\/TSMC.1973.4309314","article-title":"Textural features for image classification","author":"Haralick","year":"1973","journal-title":"Syst. Man Cybern. IEEE Trans."},{"key":"10.1016\/j.compbiomed.2017.02.012_bib31","doi-asserted-by":"crossref","first-page":"045012","DOI":"10.1088\/2057-1976\/1\/4\/045012","article-title":"Staging liver fibrosis by analysis of non-linear normalization texture in gadolinium-enhanced magnetic resonance imaging","volume":"1","author":"Mou","year":"2015","journal-title":"Biomed. Phys. Eng. Express"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib32","series-title":"Discovering Statistics Using SPSS","author":"Field","year":"2009"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib33","doi-asserted-by":"crossref","unstructured":"D. Unay, A. Ekin, Intensity versus texture for medical image search and retrival, in: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008, 2008, pp. 241\u2013244.","DOI":"10.1109\/ISBI.2008.4540977"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib34","doi-asserted-by":"crossref","unstructured":"A. Oliver, X. Llad\u00f3, J. Freixenet, J. Mart\u00ed, False positive reduction in mammographic mass detection using local binary patterns, in: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2007, pp. 286\u2013293.","DOI":"10.1007\/978-3-540-75757-3_35"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib35","doi-asserted-by":"crossref","first-page":"5213","DOI":"10.1073\/pnas.0801279105","article-title":"Identification of noninvasive imaging surrogates for brain tumor gene-expression modules","volume":"105","author":"Diehn","year":"2008","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"10.1016\/j.compbiomed.2017.02.012_bib36","doi-asserted-by":"crossref","first-page":"268","DOI":"10.1148\/radiol.2491072000","article-title":"Relationship between gene expression and enhancement in glioblastoma multiforme: exploratory dna microarray analysis 1","volume":"249","author":"Pope","year":"2008","journal-title":"Radiology"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482517300495?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482517300495?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,19]],"date-time":"2019-09-19T04:37:22Z","timestamp":1568867842000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482517300495"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,4]]},"references-count":36,"alternative-id":["S0010482517300495"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2017.02.012","relation":{},"ISSN":["0010-4825"],"issn-type":[{"value":"0010-4825","type":"print"}],"subject":[],"published":{"date-parts":[[2017,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Quantitative glioma grading using transformed gray-scale invariant textures of MRI","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2017.02.012","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}