{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,11]],"date-time":"2024-08-11T19:50:17Z","timestamp":1723405817836},"reference-count":28,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computational Biology and Chemistry"],"published-print":{"date-parts":[[2022,12]]},"DOI":"10.1016\/j.compbiolchem.2022.107785","type":"journal-article","created":{"date-parts":[[2022,11,7]],"date-time":"2022-11-07T17:38:20Z","timestamp":1667842700000},"page":"107785","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Competition between Ag+ and Ni2+ in nickel enzymes: Implications for the Ag+ antibacterial activity"],"prefix":"10.1016","volume":"101","author":[{"given":"Stefan","family":"Dobrev","sequence":"first","affiliation":[]},{"given":"Nikoleta","family":"Kircheva","sequence":"additional","affiliation":[]},{"given":"Valya","family":"Nikolova","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4717-8028","authenticated-orcid":false,"given":"Silvia","family":"Angelova","sequence":"additional","affiliation":[]},{"given":"Todor","family":"Dudev","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiolchem.2022.107785_bib1","doi-asserted-by":"crossref","first-page":"1071","DOI":"10.1002\/pro.3836","article-title":"Structure, function, and biosynthesis of nickel-dependent enzymes","volume":"29","author":"Alfano","year":"2020","journal-title":"Protein Sci."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib2","doi-asserted-by":"crossref","first-page":"1232","DOI":"10.1021\/ja01147a106","article-title":"Inhibition of Urease by Silver Ions","volume":"73","author":"Ambrose","year":"1951","journal-title":"J. Am. Chem. Soc."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib3","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.abb.2013.09.002","article-title":"Nickel-dependent metalloenzymes","volume":"544","author":"Boer","year":"2014","journal-title":"Arch. Biochem. Biophys."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib4","doi-asserted-by":"crossref","unstructured":"E.L. Carter, D.E. Tronrud, S.R. Taber, P.A. Karplus, R.P. Hausinger, Iron-containing urease in a pathogenic bacterium, Proc. Natl. Acad. Sci. 108 (2011) 13095\u201313099. https:\/\/doi.org\/10.1073\/pnas.1106915108.","DOI":"10.1073\/pnas.1106915108"},{"key":"10.1016\/j.compbiolchem.2022.107785_bib5","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.ccr.2015.12.007","article-title":"Exploration into the nickel \u2018microcosmos\u2019 in prokaryotes","volume":"311","author":"Cheng","year":"2016","journal-title":"Coord. Chem. Rev."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib6","doi-asserted-by":"crossref","first-page":"8754","DOI":"10.1021\/bi972791w","article-title":"Overproduction and characterization of a dimeric non-zinc glyoxalase i from escherichia coli: evidence for optimal activation by nickel ions","volume":"37","author":"Clugston","year":"1998","journal-title":"Biochemistry"},{"key":"10.1016\/j.compbiolchem.2022.107785_bib7","unstructured":"R. Dennington, T.A. Keith, J.M. Millam, GaussView, (2016)."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib8","doi-asserted-by":"crossref","first-page":"8092","DOI":"10.1021\/ja900168k","article-title":"Determinants of K+ vs Na+ selectivity in potassium","volume":"131","author":"Dudev","year":"2009","journal-title":"Channels, J. Am. Chem. Soc."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib9","doi-asserted-by":"crossref","first-page":"9506","DOI":"10.1021\/ja201985s","article-title":"Competition between Li+ and Mg2+ in metalloproteins. implications for lithium therapy","volume":"133","author":"Dudev","year":"2011","journal-title":"J. Am. Chem. Soc."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib10","doi-asserted-by":"crossref","first-page":"10703","DOI":"10.1021\/jp304925a","article-title":"Competition among Ca2+, Mg2+, and Na+ for model ion channel selectivity filters: determinants of ion selectivity","volume":"116","author":"Dudev","year":"2012","journal-title":"J. Phys. Chem. B."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib11","doi-asserted-by":"crossref","first-page":"12644","DOI":"10.1021\/acs.inorgchem.6b01822","article-title":"Determinants of Fe2+ over M2+ (M = Mg, Mn, Zn) selectivity in non-heme iron proteins","volume":"55","author":"Dudev","year":"2016","journal-title":"Inorg. Chem."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib12","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1007\/s00894-018-3592-0","article-title":"Competition between abiogenic Al3+ and native Mg2+, Fe2+ and Zn2+ ions in protein binding sites: implications for aluminum toxicity","volume":"24","author":"Dudev","year":"2018","journal-title":"J. Mol. Model"},{"key":"10.1016\/j.compbiolchem.2022.107785_bib13","series-title":"Revision d. 01","article-title":"Gaussian 09","author":"Frisch","year":"2013"},{"key":"10.1016\/j.compbiolchem.2022.107785_bib14","doi-asserted-by":"crossref","first-page":"20657","DOI":"10.1021\/acsomega.1c02882","article-title":"Trinuclear Calcium Site in the C2 Domain of PKC\u03b1\/\u03b3 Is Prone to Lithium Attack","volume":"6","author":"Grauffel","year":"2021","journal-title":"ACS Omega"},{"key":"10.1016\/j.compbiolchem.2022.107785_bib15","doi-asserted-by":"crossref","first-page":"8719","DOI":"10.1021\/bi000856g","article-title":"Determination of the structure of escherichia coli glyoxalase I suggests a structural basis for differential metal activation","volume":"39","author":"He","year":"2000","journal-title":"Biochemistry"},{"key":"10.1016\/j.compbiolchem.2022.107785_bib16","doi-asserted-by":"crossref","DOI":"10.1021\/acs.inorgchem.0c02664","article-title":"Zinc and its critical role in retinitis pigmentosa: insights from DFT\/SMD calculations","author":"Kircheva","year":"2020","journal-title":"Inorg. Chem."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib17","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1080\/14756360701743051","article-title":"Mono- (Ag, Hg) and di- (Cu, Hg) valent metal ions effects on the activity of jack bean urease. Probing the modes of metal binding to the enzyme","volume":"23","author":"Krajewska","year":"2008","journal-title":"J. Enzym. Inhib. Med. Chem."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib18","doi-asserted-by":"crossref","first-page":"713","DOI":"10.1039\/FT9938900713","article-title":"Thermodynamics of solvation of ions","volume":"89","author":"Marcus","year":"1993","journal-title":"J. Chem. Soc., Faraday Trans."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib19","doi-asserted-by":"crossref","first-page":"6378","DOI":"10.1021\/jp810292n","article-title":"Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions","volume":"113","author":"Marenich","year":"2009","journal-title":"J. Phys. Chem. B"},{"key":"10.1016\/j.compbiolchem.2022.107785_bib20","doi-asserted-by":"crossref","first-page":"4206","DOI":"10.1021\/cr4004488","article-title":"Nonredox nickel enzymes","volume":"114","author":"Maroney","year":"2014","journal-title":"Chem. Rev."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib21","doi-asserted-by":"crossref","first-page":"8240","DOI":"10.1039\/C8DT01190G","article-title":"The structure of urease inactivated by Ag(i): a new paradigm for enzyme inhibition by heavy metals","volume":"47","author":"Mazzei","year":"2018","journal-title":"Dalt. Trans."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib22","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/S0168-6445(03)00042-1","article-title":"Nickel uptake and utilization by microorganisms","volume":"27","author":"Mulrooney","year":"2003","journal-title":"FEMS Microbiol. Rev."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib23","doi-asserted-by":"crossref","first-page":"18632","DOI":"10.1074\/jbc.271.31.18632","article-title":"Characterization of the mononickel metallocenter in H134A mutant urease","volume":"271","author":"Park","year":"1996","journal-title":"*, J. Biol. Chem."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib24","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1007\/s10858-005-5735-8","article-title":"A refined model for the structure of acireductone dioxygenase from klebsiella ATCC 8724 incorporating residual dipolar couplings","volume":"34","author":"Pochapsky","year":"2006","journal-title":"J. Biomol. NMR"},{"key":"10.1016\/j.compbiolchem.2022.107785_bib25","doi-asserted-by":"crossref","first-page":"18571","DOI":"10.1074\/jbc.R900020200","article-title":"Nickel-based enzyme systems","volume":"284","author":"Ragsdale","year":"2009","journal-title":"*, J. Biol. Chem."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib26","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/S0162-0134(98)10042-9","article-title":"Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins","volume":"71","author":"Rul\u0131\u0301\u0161ek","year":"1998","journal-title":"J. Inorg. Biochem"},{"key":"10.1016\/j.compbiolchem.2022.107785_bib27","unstructured":"The PyMOL Molecular Graphics System, Version 2.2.3, Schr\u00f6dinger, LLC."},{"key":"10.1016\/j.compbiolchem.2022.107785_bib28","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1007\/s00214-007-0310-x","article-title":"The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function","volume":"120","author":"Zhao","year":"2008","journal-title":"Theor. Chem. Acc."}],"container-title":["Computational Biology and Chemistry"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1476927122001657?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1476927122001657?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,3]],"date-time":"2023-04-03T11:34:19Z","timestamp":1680521659000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1476927122001657"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12]]},"references-count":28,"alternative-id":["S1476927122001657"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiolchem.2022.107785","relation":{},"ISSN":["1476-9271"],"issn-type":[{"value":"1476-9271","type":"print"}],"subject":[],"published":{"date-parts":[[2022,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Competition between Ag+ and Ni2+ in nickel enzymes: Implications for the Ag+ antibacterial activity","name":"articletitle","label":"Article Title"},{"value":"Computational Biology and Chemistry","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiolchem.2022.107785","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107785"}}