{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,9]],"date-time":"2024-11-09T05:10:20Z","timestamp":1731129020164,"version":"3.28.0"},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2024,11]]},"DOI":"10.1016\/j.compag.2024.109440","type":"journal-article","created":{"date-parts":[[2024,9,21]],"date-time":"2024-09-21T02:17:06Z","timestamp":1726885026000},"page":"109440","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Strawberry canopy structural parameters estimation and growth analysis from UAV multispectral imagery using a geospatial tool"],"prefix":"10.1016","volume":"226","author":[{"given":"Caiwang","family":"Zheng","sequence":"first","affiliation":[]},{"given":"Amr","family":"Abd-Elrahman","sequence":"additional","affiliation":[]},{"given":"Vance M.","family":"Whitaker","sequence":"additional","affiliation":[]},{"given":"Xu","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Cheryl","family":"Dalid","sequence":"additional","affiliation":[]},{"given":"Kai","family":"Shen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"21","key":"10.1016\/j.compag.2024.109440_b0005","doi-asserted-by":"crossref","first-page":"3632","DOI":"10.3390\/rs12213632","article-title":"Automated canopy delineation and size metrics extraction for strawberry dry weight modeling using raster analysis of high-resolution imagery","volume":"12","author":"Abd-Elrahman","year":"2020","journal-title":"Remote Sens. (Basel)"},{"key":"10.1016\/j.compag.2024.109440_b0010","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1016\/j.compag.2017.07.008","article-title":"Crop height monitoring with digital imagery from Unmanned Aerial System (UAS)","volume":"141","author":"Chang","year":"2017","journal-title":"Comput. Electron. Agric."},{"issue":"4","key":"10.1016\/j.compag.2024.109440_b0015","doi-asserted-by":"crossref","first-page":"39","DOI":"10.3390\/drones2040039","article-title":"Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks","volume":"2","author":"Csillik","year":"2018","journal-title":"Drones"},{"key":"10.1016\/j.compag.2024.109440_b0020","doi-asserted-by":"crossref","first-page":"508","DOI":"10.3389\/fpls.2019.00508","article-title":"Leveraging image analysis for high-throughput plant phenotyping","volume":"10","author":"Das Choudhury","year":"2019","journal-title":"Front. Plant Sci."},{"key":"10.1016\/j.compag.2024.109440_b0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106033","article-title":"A comprehensive review on recent applications of unmanned aerial vehicle remote sensing with various sensors for high-throughput plant phenotyping","volume":"182","author":"Feng","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2024.109440_b0030","doi-asserted-by":"crossref","DOI":"10.1016\/j.imavis.2022.104401","article-title":"A review on 2D instance segmentation based on deep neural networks","volume":"120","author":"Gu","year":"2022","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.compag.2024.109440_b0035","doi-asserted-by":"crossref","first-page":"926","DOI":"10.3389\/fpls.2019.00926","article-title":"Fuzzy clustering of maize plant-height patterns using time series of UAV remote-sensing images and variety traits","volume":"10","author":"Han","year":"2019","journal-title":"Front. Plant Sci."},{"issue":"1","key":"10.1016\/j.compag.2024.109440_b0040","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13007-019-0419-7","article-title":"Accuracy assessment of plant height using an unmanned aerial vehicle for quantitative genomic analysis in bread wheat","volume":"15","author":"Hassan","year":"2019","journal-title":"Plant Methods"},{"key":"10.1016\/j.compag.2024.109440_b0045","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.eja.2018.02.004","article-title":"Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: example for sorghum breeding","volume":"95","author":"Hu","year":"2018","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.compag.2024.109440_b0050","article-title":"Assimilation of remote sensing into crop growth models: current status and perspectives","volume":"276","author":"Huang","year":"2019","journal-title":"Agric. For. Meteorol."},{"issue":"1","key":"10.1016\/j.compag.2024.109440_b0055","doi-asserted-by":"crossref","first-page":"102","DOI":"10.3390\/agriculture12010102","article-title":"Evaluation of individual plant growth estimation in an intercropping field with UAV imagery","volume":"12","author":"Jamil","year":"2022","journal-title":"Agriculture"},{"issue":"2","key":"10.1016\/j.compag.2024.109440_b0060","doi-asserted-by":"crossref","DOI":"10.1080\/15592324.2019.1709718","article-title":"Logistic models for simulating the growth of plants by defining the maximum plant size as the limit of information flow","volume":"15","author":"Kawano","year":"2020","journal-title":"Plant Signal. Behav."},{"issue":"4","key":"10.1016\/j.compag.2024.109440_b0065","doi-asserted-by":"crossref","first-page":"563","DOI":"10.3390\/rs10040563","article-title":"Modeling and testing of growth status for Chinese cabbage and white radish with UAV-based RGB imagery","volume":"10","author":"Kim","year":"2018","journal-title":"Remote Sens. (Basel)"},{"issue":"9","key":"10.1016\/j.compag.2024.109440_b0070","doi-asserted-by":"crossref","first-page":"1456","DOI":"10.1109\/LGRS.2018.2841429","article-title":"Automated segmentation of leaves from deciduous trees in terrestrial laser scanning point clouds","volume":"15","author":"Koma","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.compag.2024.109440_b0075","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105672","article-title":"A review of computer vision technologies for plant phenotyping","volume":"176","author":"Li","year":"2020","journal-title":"Comput. Electron. Agric."},{"issue":"3","key":"10.1016\/j.compag.2024.109440_b0080","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1080\/2150704X.2015.1021934","article-title":"Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle","volume":"6","author":"Li","year":"2015","journal-title":"Remote Sensing Letters"},{"key":"10.1016\/j.compag.2024.109440_b0085","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2024.108699","article-title":"Improving potato above ground biomass estimation combining hyperspectral data and harmonic decomposition techniques","volume":"218","author":"Liu","year":"2024","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2024.109440_b0090","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2024.108808","article-title":"Improving potato AGB estimation to mitigate phenological stage impacts through depth features from hyperspectral data","volume":"219","author":"Liu","year":"2024","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2024.109440_b0095","doi-asserted-by":"crossref","first-page":"2002","DOI":"10.3389\/fpls.2017.02002","article-title":"High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground LiDAR estimates","volume":"8","author":"Madec","year":"2017","journal-title":"Front. Plant Sci."},{"issue":"2","key":"10.1016\/j.compag.2024.109440_b0100","doi-asserted-by":"crossref","first-page":"330","DOI":"10.3390\/rs10020330","article-title":"High-throughput phenotyping of canopy cover and senescence in maize field trials using aerial digital canopy imaging","volume":"10","author":"Makanza","year":"2018","journal-title":"Remote Sens. (Basel)"},{"issue":"5","key":"10.1016\/j.compag.2024.109440_b0105","doi-asserted-by":"crossref","first-page":"805","DOI":"10.3390\/rs10050805","article-title":"Estimation of vegetable crop parameter by multi-temporal UAV-borne images","volume":"10","author":"Moeckel","year":"2018","journal-title":"Remote Sens. (Basel)"},{"key":"10.1016\/j.compag.2024.109440_b0110","doi-asserted-by":"crossref","first-page":"147","DOI":"10.3389\/fpls.2019.00147","article-title":"LiDARPheno\u2013a low-cost LiDAR-based 3D scanning system for leaf morphological trait extraction","volume":"10","author":"Panjvani","year":"2019","journal-title":"Front. Plant Sci."},{"issue":"12","key":"10.1016\/j.compag.2024.109440_b0115","doi-asserted-by":"crossref","first-page":"1250","DOI":"10.3390\/rs9121250","article-title":"High throughput phenotyping of blueberry bush morphological traits using unmanned aerial systems","volume":"9","author":"Patrick","year":"2017","journal-title":"Remote Sens. (Basel)"},{"issue":"1","key":"10.1016\/j.compag.2024.109440_b0120","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13007-019-0490-0","article-title":"Measuring crops in 3D: using geometry for plant phenotyping","volume":"15","author":"Paulus","year":"2019","journal-title":"Plant Methods"},{"key":"10.1016\/j.compag.2024.109440_b0125","doi-asserted-by":"crossref","DOI":"10.34133\/2022\/9802585","article-title":"Application of UAV multisensor data and ensemble approach for high-throughput estimation of maize phenotyping traits","author":"Shu","year":"2022","journal-title":"Plant Phenomics"},{"issue":"10","key":"10.1016\/j.compag.2024.109440_b0130","doi-asserted-by":"crossref","first-page":"1239","DOI":"10.3390\/rs11101239","article-title":"Winter wheat canopy height extraction from UAV-based point cloud data with a moving cuboid filter","volume":"11","author":"Song","year":"2019","journal-title":"Remote Sens. (Basel)"},{"issue":"4","key":"10.1016\/j.compag.2024.109440_b0135","doi-asserted-by":"crossref","first-page":"1231","DOI":"10.3390\/s20041231","article-title":"Estimation of the yield and plant height of winter wheat using UAV-based hyperspectral images","volume":"20","author":"Tao","year":"2020","journal-title":"Sensors"},{"issue":"6","key":"10.1016\/j.compag.2024.109440_b0140","doi-asserted-by":"crossref","first-page":"700","DOI":"10.3390\/rs11060700","article-title":"Comparing nadir and multi-angle view sensor technologies for measuring in-field plant height of upland cotton","volume":"11","author":"Thompson","year":"2019","journal-title":"Remote Sens. (Basel)"},{"key":"10.1016\/j.compag.2024.109440_b0145","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.compag.2015.03.019","article-title":"An automatic object-based method for optimal thresholding in UAV images: application for vegetation detection in herbaceous crops","volume":"114","author":"Torres-S\u00e1nchez","year":"2015","journal-title":"Comput. Electron. Agric."},{"issue":"2","key":"10.1016\/j.compag.2024.109440_b0150","doi-asserted-by":"crossref","first-page":"851","DOI":"10.1109\/JSTARS.2013.2250921","article-title":"Characterization of rice paddies by a UAV-mounted miniature hyperspectral sensor system","volume":"6","author":"Uto","year":"2013","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.compag.2024.109440_b0160","first-page":"113","article-title":"Notice sur la loi que la population suit dans son accroissement","volume":"10","author":"Verhulst","year":"1838","journal-title":"Correspondence Mathematique et Physique (Ghent)"},{"doi-asserted-by":"crossref","unstructured":"Wang, L., Zheng, L., Wang, M. (2022). 3D Point Cloud Instance Segmentation of Lettuce Based on PartNet. InProceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition(pp. 1647-1655).","key":"10.1016\/j.compag.2024.109440_b0165","DOI":"10.1109\/CVPRW56347.2022.00171"},{"issue":"1","key":"10.1016\/j.compag.2024.109440_b0170","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13007-018-0324-5","article-title":"Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies","volume":"14","author":"Wang","year":"2018","journal-title":"Plant Methods"},{"issue":"1","key":"10.1016\/j.compag.2024.109440_b0175","doi-asserted-by":"crossref","first-page":"63","DOI":"10.3390\/rs11010063","article-title":"Maize plant phenotyping: comparing 3D laser scanning, multi-view stereo reconstruction, and 3D digitizing estimates","volume":"11","author":"Wang","year":"2018","journal-title":"Remote Sens. (Basel)"},{"issue":"5","key":"10.1016\/j.compag.2024.109440_b0180","doi-asserted-by":"crossref","first-page":"71","DOI":"10.3390\/agronomy8050071","article-title":"Existing and potential statistical and computational approaches for the analysis of 3D CT images of plant roots","volume":"8","author":"Xu","year":"2018","journal-title":"Agronomy"},{"key":"10.1016\/j.compag.2024.109440_b0185","doi-asserted-by":"crossref","first-page":"1111","DOI":"10.3389\/fpls.2017.01111","article-title":"Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives","volume":"8","author":"Yang","year":"2017","journal-title":"Front. Plant Sci."},{"key":"10.1016\/j.compag.2024.109440_b0190","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1007\/s11119-017-9516-7","article-title":"The application of unmanned aircraft systems to plant protection in China","volume":"19","author":"Yang","year":"2018","journal-title":"Precis. Agric."},{"issue":"3","key":"10.1016\/j.compag.2024.109440_b0195","doi-asserted-by":"crossref","first-page":"531","DOI":"10.3390\/rs13030531","article-title":"Remote sensing and machine learning in crop phenotyping and management, with an emphasis on applications in strawberry farming","volume":"13","author":"Zheng","year":"2021","journal-title":"Remote Sens. (Basel)"},{"issue":"18","key":"10.1016\/j.compag.2024.109440_b0200","doi-asserted-by":"crossref","first-page":"4511","DOI":"10.3390\/rs14184511","article-title":"Prediction of strawberry dry biomass from UAV multispectral imagery using multiple machine learning methods","volume":"14","author":"Zheng","year":"2022","journal-title":"Remote Sens. (Basel)"},{"key":"10.1016\/j.compag.2024.109440_b0205","article-title":"Object-detection from multi-view remote sensing images: a case study of fruit and flower detection and counting on a central Florida strawberry farm","volume":"123","author":"Zheng","year":"2023","journal-title":"Int. J. Appl. Earth Obs. Geoinf."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169924008317?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169924008317?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,8]],"date-time":"2024-11-08T10:08:06Z","timestamp":1731060486000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169924008317"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11]]},"references-count":40,"alternative-id":["S0168169924008317"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2024.109440","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2024,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Strawberry canopy structural parameters estimation and growth analysis from UAV multispectral imagery using a geospatial tool","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2024.109440","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"109440"}}