{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,9]],"date-time":"2024-11-09T05:10:53Z","timestamp":1731129053386,"version":"3.28.0"},"reference-count":59,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003130","name":"Research Foundation Flanders","doi-asserted-by":"publisher","award":["S003421N"],"id":[{"id":"10.13039\/501100003130","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2024,11]]},"DOI":"10.1016\/j.compag.2024.109364","type":"journal-article","created":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T19:59:00Z","timestamp":1725307140000},"page":"109364","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Unsupervised anomaly detection for pome fruit quality inspection using X-ray radiography"],"prefix":"10.1016","volume":"226","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3807-6695","authenticated-orcid":false,"given":"Astrid","family":"Tempelaere","sequence":"first","affiliation":[]},{"given":"Jiaqi","family":"He","sequence":"additional","affiliation":[]},{"given":"Leen","family":"Van Doorselaer","sequence":"additional","affiliation":[]},{"given":"Pieter","family":"Verboven","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9542-8285","authenticated-orcid":false,"given":"Bart","family":"Nicolai","sequence":"additional","affiliation":[]},{"given":"Mario","family":"Valerio Giuffrida","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2024.109364_b0005","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/s20236753","article-title":"Classification of watermelon seeds using morphological patterns of x-ray imaging: A comparison of conventional machine learning and deep learning","volume":"20","author":"Ahmed","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2024.109364_b0010","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/S0925-5214(01)00120-X","article-title":"Responses of \u201cFuji\u201d apples to short and long duration exposure to elevated CO2 concentration","volume":"24","author":"Argenta","year":"2002","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2024.109364_b0015","doi-asserted-by":"crossref","DOI":"10.1016\/j.postharvbio.2023.112439","article-title":"Factors affecting development of disorders expressed after storage of \u2018Gala\u2019 apple fruit","volume":"204","author":"Argenta","year":"2023","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2024.109364_b0020","first-page":"372","article-title":"Improving unsupervised defect segmentation by applying structural similarity to autoencoders. VISIGRAPP 2019 - Proc. 14th Int. Jt. Conf. Comput. Vision","volume":"5","author":"Bergmann","year":"2019","journal-title":"Imaging Comput. Graph. Theory Appl."},{"key":"10.1016\/j.compag.2024.109364_b0025","doi-asserted-by":"crossref","unstructured":"Chabalala, Y., Adam, E., Ali, K.A., 2023. Exploring the Effect of Balanced and Imbalanced Multi \u2011 Class Distribution Data and Sampling Techniques on Fruit \u2011 Tree Crop Classification Using Different Machine Learning Classifiers 70\u201392.","DOI":"10.3390\/geomatics3010004"},{"key":"10.1016\/j.compag.2024.109364_b0030","article-title":"Convolutional neural networks using enhanced radiographs for real-time detection of sitophilus zeamais in maize grain","volume":"10","author":"da Silva","year":"2021","journal-title":"Foods"},{"key":"10.1016\/j.compag.2024.109364_b0035","unstructured":"Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N., 2020. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale."},{"key":"10.1016\/j.compag.2024.109364_b0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.jfoodeng.2020.110102","article-title":"On line detection of defective apples using computer vision system combined with deep learning methods","volume":"286","author":"Fan","year":"2020","journal-title":"J. Food Eng."},{"key":"10.1016\/j.compag.2024.109364_b0045","doi-asserted-by":"crossref","unstructured":"Gadgile, D., Chavan, A., 2017. Detection of post-harvest fungal diseases of mango by X-ray scanning non-destructive technology 7, 65\u201369. Doi: 10.5943\/ppq\/7\/1\/8.","DOI":"10.5943\/ppq\/7\/1\/8"},{"key":"10.1016\/j.compag.2024.109364_b0050","doi-asserted-by":"crossref","unstructured":"Gadgile, D., Joshi, C.P., Shinde, V.M., Kachare, P.B., 2017. Detection of green mold rot infection of citrus fruit by X-ray scanning non-destructive technology 8, 78\u201380. Doi: 10.19071\/cb.2017.v8.3211.","DOI":"10.19071\/cb.2017.v8.3211"},{"year":"2016","series-title":"Deep Learning","author":"Goodfellow","key":"10.1016\/j.compag.2024.109364_b0055"},{"key":"10.1016\/j.compag.2024.109364_b0060","doi-asserted-by":"crossref","unstructured":"Guo, X., Liu, X., Zhu, E., Yin, J., 2017. Deep Clustering with Convolutional Autoencoders. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 10635 LNCS, 373\u2013382. Doi: 10.1007\/978-3-319-70096-0_39.","DOI":"10.1007\/978-3-319-70096-0_39"},{"key":"10.1016\/j.compag.2024.109364_b0065","doi-asserted-by":"crossref","DOI":"10.1016\/j.postharvbio.2024.112953","article-title":"Non-destructive detection method and experiment of pomelo volume and flesh content based on image fusion","volume":"213","author":"Han","year":"2024","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2024.109364_b0070","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1016\/j.postharvbio.2012.08.008","article-title":"Characterisation of \u201cBraeburn\u201d Browning Disorder by means of X-Ray Micro-CT","volume":"75","author":"Herremans","year":"2013","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2024.109364_b0075","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.postharvbio.2013.08.008","article-title":"Comparison of X-ray CT and MRI of Watercore Disorder of Different Apple Cultivars","volume":"87","author":"Herremans","year":"2014","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2024.109364_b0080","doi-asserted-by":"crossref","first-page":"W126","DOI":"10.2214\/AJR.14.13116","article-title":"Radiographic techniques, contrast, and noise in x-ray imaging","volume":"204","author":"Huda","year":"2015","journal-title":"AJR. Am. J. Roentgenol."},{"key":"10.1016\/j.compag.2024.109364_b0085","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.postharvbio.2015.12.015","article-title":"Consumers\u2019 Visual Attention to Fruit Defects and Disorders: A Case Study with Apple Images","volume":"116","author":"Jaeger","year":"2016","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2024.109364_b0090","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2019.104948","article-title":"Depthwise separable convolution architectures for plant disease classification","volume":"165","author":"KC","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2024.109364_b0095","first-page":"2547","article-title":"Real-Time Anomaly Detection in Packaged Food X-Ray Images Using Supervised Learning","volume":"67","author":"Kim","year":"2021","journal-title":"Comput. Mater. Contin."},{"key":"10.1016\/j.compag.2024.109364_b0100","first-page":"1","article-title":"Adam: A method for stochastic optimization. 3rd Int","volume":"2015","author":"Kingma","year":"2015","journal-title":"Conf. Learn. Represent. ICLR"},{"key":"10.1016\/j.compag.2024.109364_b0105","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1016\/j.compag.2018.08.032","article-title":"Improving efficiency of organic farming by using a deep learning classification approach","volume":"153","author":"Knoll","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2024.109364_b0110","article-title":"Real-time detection of foreign objects using x-ray imaging for dry food manufacturing line","volume":"1\u20134","author":"Kwon","year":"2008","journal-title":"Proc. Int. Symp. Consum. Electron. ISCE"},{"key":"10.1016\/j.compag.2024.109364_b0115","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/S0925-5214(98)00035-0","article-title":"Effect of growing season, harvest maturity, waxing, low O2 and elevated CO2 on flesh browning disorders in \u201cBraeburn\u201d apples","volume":"14","author":"Lau","year":"1998","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2024.109364_b0120","unstructured":"Liznerski, P., Ruff, L., Vandermeulen, R.A., Franks, B.J., Kloft, M., M\u00fcller, K.-R., 2020. Explainable Deep One-Class Classification 1\u201325."},{"key":"10.1016\/j.compag.2024.109364_b0125","first-page":"1213","article-title":"X-Ray Applications in Food and Agriculture: A Review","volume":"56","author":"Mathanker","year":"2013","journal-title":"Trans. ASABE"},{"key":"10.1016\/j.compag.2024.109364_b0130","doi-asserted-by":"crossref","DOI":"10.1016\/j.postharvbio.2023.112390","article-title":"Automated detection of internal fruit rot in Hass avocado via deep learning-based semantic segmentation of X-ray images","volume":"203","author":"Matsui","year":"2023","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2024.109364_b0135","doi-asserted-by":"crossref","first-page":"647","DOI":"10.1111\/1541-4337.12269","article-title":"Time-Temperature Management Along the Food Cold Chain: A Review of Recent Developments","volume":"16","author":"Mercier","year":"2017","journal-title":"Compr. Rev. Food Sci. Food Saf."},{"key":"10.1016\/j.compag.2024.109364_b0140","doi-asserted-by":"crossref","DOI":"10.1063\/1.4963604","article-title":"Grating-based X-ray tomography of 3D food structures","volume":"1769","author":"Miklos","year":"2016","journal-title":"AIP Conf. Proc."},{"key":"10.1016\/j.compag.2024.109364_b0145","doi-asserted-by":"crossref","unstructured":"Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L., 2021. VT-ADL: A Vision Transformer Network for Image Anomaly Detection and Localization. IEEE Int. Symp. Ind. Electron. 2021-June. Doi: 10.1109\/ISIE45552.2021.9576231.","DOI":"10.1109\/ISIE45552.2021.9576231"},{"key":"10.1016\/j.compag.2024.109364_b0150","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1146\/annurev-food-030713-092410","article-title":"Nondestructive Measurement of Fruit and Vegetable Quality","volume":"5","author":"Nicola\u00ef","year":"2014","journal-title":"Annu. Rev. Food Sci. Technol."},{"key":"10.1016\/j.compag.2024.109364_b0155","article-title":"X-ray computed tomography for 3D plant imaging","volume":"1\u201315","author":"Piovesan","year":"2021","journal-title":"Trends Plant Sci."},{"key":"10.1016\/j.compag.2024.109364_b0160","unstructured":"Ruff, L., Vandermeulen, R.A., G\u00f6rnitz, N., Deecke, L., Siddiqui, S.A., Binder, A., M\u00fcller, E., Kloft, M., 2018. Deep one-class classification. 35th Int. Conf. Mach. Learn. ICML 2018 10, 6981\u20136996."},{"key":"10.1016\/j.compag.2024.109364_b0165","unstructured":"Ruff, L., Vandermeulen, R.A., G\u00f6rnitz, N., Binder, A., M\u00fcller, E., M\u00fcller, K.R., Kloft, M., 2020. Deep Semi-Supervised Anomaly Detection. 8th Int. Conf. Learn. Represent. ICLR 2020."},{"key":"10.1016\/j.compag.2024.109364_b0170","doi-asserted-by":"crossref","first-page":"756","DOI":"10.1109\/JPROC.2021.3052449","article-title":"A Unifying Review of Deep and Shallow Anomaly Detection","volume":"109","author":"Ruff","year":"2021","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.compag.2024.109364_b0175","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1117\/12.262857","article-title":"Defect detection in apples by means of x-ray imaging","volume":"2907","author":"Schatzki","year":"1996","journal-title":"Proc. SPIE"},{"key":"10.1016\/j.compag.2024.109364_b0180","doi-asserted-by":"crossref","unstructured":"Schlegl, T., Seeb\u00f6ck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G., 2017. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 10265 LNCS, 146\u2013147. Doi: 10.1007\/978-3-319-59050-9_12.","DOI":"10.1007\/978-3-319-59050-9_12"},{"key":"10.1016\/j.compag.2024.109364_b0185","unstructured":"Shi, W., Caballero, J., Theis, L., Huszar, F., Aitken, A., Ledig, C., Wang, Z., 2016. Is the deconvolution layer the same as a convolutional layer?."},{"author":"Statista","key":"10.1016\/j.compag.2024.109364_b0190"},{"key":"10.1016\/j.compag.2024.109364_b0195","article-title":"Influence of different origins, CA storage conditions and storage times on internal browning in apple and pear cultivars","volume":"213\u2013220","author":"Tempelaere","year":"2022","journal-title":"Acta Hortic."},{"key":"10.1016\/j.compag.2024.109364_b0200","doi-asserted-by":"crossref","DOI":"10.1016\/j.postharvbio.2023.112576","article-title":"An introduction to artificial intelligence in machine vision for postharvest detection of disorders in horticultural products","volume":"206","author":"Tempelaere","year":"2023","journal-title":"Postharvest Biol. Technol."},{"year":"2023","series-title":"Non-destructive internal disorder segmentation in pear fruit by X-ray radiography and AI","author":"Tempelaere","key":"10.1016\/j.compag.2024.109364_b0205"},{"key":"10.1016\/j.compag.2024.109364_b0210","doi-asserted-by":"crossref","DOI":"10.1016\/j.postharvbio.2023.112342","article-title":"Synthetic data for X-ray CT of healthy and disordered pear fruit using deep learning","volume":"200","author":"Tempelaere","year":"2023","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2024.109364_b0215","first-page":"552","article-title":"Deep Learning for Apple Fruit Quality Inspection using X-Ray Imaging","author":"Tempelaere","year":"2023","journal-title":"Proc. IEEE\/CVF Int. Conf. Comput. vis."},{"key":"10.1016\/j.compag.2024.109364_b0220","doi-asserted-by":"crossref","DOI":"10.1016\/j.foodcont.2023.110092","article-title":"BraeNet: Internal disorder detection in \u2018Braeburn\u2019 apple using X-ray imaging data","volume":"155","author":"Tempelaere","year":"2024","journal-title":"Food Control"},{"key":"10.1016\/j.compag.2024.109364_b0225","unstructured":"Terry, L.A., Mena, C., Williams, A., Jenney, N., Whitehead, P., 2011. Fruit and Vegetable Resource Maps: Mapping Fruit and Vegetable Waste Through the Retail and Wholesale Supply Chain. WRAP."},{"year":"2005","series-title":"Shipping Point And Market Inspection Instructions For Apples","author":"Usda","key":"10.1016\/j.compag.2024.109364_b0230"},{"year":"2007","series-title":"Shipping Point And Market Inspection Instructions For Pears","author":"Usda","key":"10.1016\/j.compag.2024.109364_b0235"},{"key":"10.1016\/j.compag.2024.109364_b0240","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.ultramic.2015.05.002","article-title":"The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography","volume":"157","author":"van Aarle","year":"2015","journal-title":"Ultramicroscopy"},{"key":"10.1016\/j.compag.2024.109364_b0245","doi-asserted-by":"crossref","first-page":"25129","DOI":"10.1364\/OE.24.025129","article-title":"Fast and flexible X-ray tomography using the ASTRA toolbox","volume":"24","author":"van Aarle","year":"2016","journal-title":"Opt. Express"},{"key":"10.1016\/j.compag.2024.109364_bib296","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.postharvbio.2015.09.020","article-title":"A segmentation and classification algorithm for online detection of internal disorders in citrus using X-ray radiographs","volume":"112","author":"Van Dael","year":"2016","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2024.109364_b0250","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1016\/j.postharvbio.2018.05.020","article-title":"Combination of Shape and X-Ray Inspection for Apple Internal Quality Control. In Silico Analysis of the Methodology based on X-Ray Computed Tomography","volume":"148","author":"van Dael","year":"2019","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2024.109364_b0255","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.114925","article-title":"Non-destructive internal disorder detection of Conference pears by semantic segmentation of X-ray CT scans using deep learning","volume":"176","author":"Van De Looverbosch","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compag.2024.109364_b0260","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106962","article-title":"Inline nondestructive internal disorder detection in pear fruit using explainable deep anomaly detection on X-ray images","volume":"197","author":"Van De Looverbosch","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2024.109364_b0270","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image Quality Assessment : From Error Visibility to Structural Similarity. 600 IEEE Trans","volume":"13","author":"Wang","year":"2004","journal-title":"IMAGE Process."},{"key":"10.1016\/j.compag.2024.109364_b0275","doi-asserted-by":"crossref","DOI":"10.1016\/j.scienta.2022.110943","article-title":"Seasonal variation in calcium and ascorbic acid content at harvest related to internal browning in \u2018Braeburn\u2019 apple during controlled atmosphere storage","volume":"297","author":"Wood","year":"2022","journal-title":"Sci. Hortic. (amsterdam)"},{"key":"10.1016\/j.compag.2024.109364_b0280","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1002\/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3","article-title":"Index for rating diagnostic tests","volume":"3","author":"Youden","year":"1950","journal-title":"Cancer"},{"key":"10.1016\/j.compag.2024.109364_b0285","doi-asserted-by":"crossref","DOI":"10.1016\/j.postharvbio.2022.111950","article-title":"Detection of pear freezing injury by non-destructive X-ray scanning technology","volume":"190","author":"Yu","year":"2022","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2024.109364_b0290","unstructured":"Zhang, Y., 2015. A Better Autoencoder for Image: Convolutional Autoencoder 1\u20137."},{"key":"10.1016\/j.compag.2024.109364_b0295","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.106328","article-title":"Spatial\u2013contextual variational autoencoder with attention correction for anomaly detection in retinal OCT images","volume":"152","author":"Zhou","year":"2023","journal-title":"Comput. Biol. Med."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169924007555?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169924007555?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,8]],"date-time":"2024-11-08T10:05:12Z","timestamp":1731060312000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169924007555"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11]]},"references-count":59,"alternative-id":["S0168169924007555"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2024.109364","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2024,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Unsupervised anomaly detection for pome fruit quality inspection using X-ray radiography","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2024.109364","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"109364"}}