{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,6]],"date-time":"2024-07-06T20:45:45Z","timestamp":1720298745324},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2026,3,19]],"date-time":"2026-03-19T00:00:00Z","timestamp":1773878400000},"content-version":"am","delay-in-days":687,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100005825","name":"National Institute of Food and Agriculture","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100005825","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000199","name":"U.S. Department of Agriculture","doi-asserted-by":"publisher","award":["2020\u201367015-30831","WIS04094"],"id":[{"id":"10.13039\/100000199","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1016\/j.compag.2024.108825","type":"journal-article","created":{"date-parts":[[2024,3,19]],"date-time":"2024-03-19T11:30:16Z","timestamp":1710847816000},"page":"108825","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["A polar transformation augmentation approach for enhancing mammary gland segmentation in ultrasound images"],"prefix":"10.1016","volume":"220","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0674-5332","authenticated-orcid":false,"given":"Dario A.B.","family":"Oliveira","sequence":"first","affiliation":[]},{"given":"Tiago","family":"Bresolin","sequence":"additional","affiliation":[]},{"given":"Sandra G.","family":"Coelho","sequence":"additional","affiliation":[]},{"given":"M.M.","family":"Campos","sequence":"additional","affiliation":[]},{"given":"C.F.A.","family":"Lage","sequence":"additional","affiliation":[]},{"given":"J.M.","family":"Le\u00e3o","sequence":"additional","affiliation":[]},{"given":"Luiz G.R.","family":"Pereira","sequence":"additional","affiliation":[]},{"given":"Laura","family":"Hernandez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9849-7358","authenticated-orcid":false,"given":"Jo\u00e3o R.R.","family":"Dorea","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"9, Part B","key":"10.1016\/j.compag.2024.108825_b1","doi-asserted-by":"crossref","first-page":"1318","DOI":"10.1016\/j.jacr.2019.06.004","article-title":"A survey of deep-learning applications in ultrasound: Artificial intelligence\u2013powered ultrasound for improving clinical workflow","volume":"16","author":"Akkus","year":"2019","journal-title":"J. Am. Coll. Radiol."},{"key":"10.1016\/j.compag.2024.108825_b2","series-title":"SegNet: A deep convolutional encoder-decoder architecture for image segmentation","author":"Badrinarayanan","year":"2016"},{"issue":"4","key":"10.1016\/j.compag.2024.108825_b3","article-title":"Improving breast cancer diagnosis by incorporating raw ultrasound parameters into machine learning","volume":"3","author":"Baek","year":"2022","journal-title":"Mach. Learn.: Sci. Technol."},{"key":"10.1016\/j.compag.2024.108825_b4","doi-asserted-by":"crossref","first-page":"2709","DOI":"10.3168\/jds.S0022-0302(95)76902-8","article-title":"Influence of prepubertal dietary regimen on mammary growth of holstein heifers","volume":"78","author":"Capuco","year":"1995","journal-title":"J. Dairy Sci."},{"issue":"4","key":"10.1016\/j.compag.2024.108825_b5","doi-asserted-by":"crossref","first-page":"3193","DOI":"10.3168\/jds.2015-9990","article-title":"Effects of late-gestation heat stress on immunity and performance of calves","volume":"99","author":"Dahl","year":"2016","journal-title":"J. Dairy Sci."},{"issue":"3","key":"10.1016\/j.compag.2024.108825_b6","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1542\/peds.112.3.607","article-title":"Risk factors for suboptimal infant breastfeeding behavior, delayed onset of lactation, and excess neonatal weight loss","volume":"112","author":"Dewey","year":"2003","journal-title":"Pediatrics"},{"key":"10.1016\/j.compag.2024.108825_b7","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/j.patrec.2020.07.028","article-title":"Deep k-means: Jointly clustering with k-means and learning representations","volume":"138","author":"Fard","year":"2020","journal-title":"Pattern Recognit. Lett."},{"issue":"1","key":"10.1016\/j.compag.2024.108825_b8","doi-asserted-by":"crossref","first-page":"767","DOI":"10.3168\/jds.2017-12798","article-title":"The effects of increasing amounts of milk replacer powder added to whole milk on mammary gland measurements using ultrasound in dairy heifers","volume":"101","author":"Furini","year":"2018","journal-title":"J. Dairy Sci."},{"key":"10.1016\/j.compag.2024.108825_b9","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1186\/1746-4358-4-4","article-title":"Ultrasound imaging of the lactating breast: Methodology and application","volume":"4","author":"Geddes","year":"2009","journal-title":"Int. Breastfeed. J."},{"issue":"6","key":"10.1016\/j.compag.2024.108825_b10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0253202","article-title":"Segmentation and recognition of breast ultrasound images based on an expanded U-net","volume":"16","author":"Guo","year":"2021","journal-title":"PLoS One"},{"issue":"7","key":"10.1016\/j.compag.2024.108825_b11","doi-asserted-by":"crossref","DOI":"10.3390\/bioengineering10070807","article-title":"Performance comparison of object detection networks for shrapnel identification in ultrasound images","volume":"10","author":"Hernandez-Torres","year":"2023","journal-title":"Bioengineering"},{"key":"10.1016\/j.compag.2024.108825_b12","first-page":"25","article-title":"Markers of lactation insufficiency: A study of 34 mothers","author":"Huggins","year":"2000","journal-title":"Issues Clin. Lact."},{"key":"10.1016\/j.compag.2024.108825_b13","doi-asserted-by":"crossref","first-page":"935","DOI":"10.1016\/j.clp.2006.09.007","article-title":"Emergency department visits and rehospitalizations in late preterm infants","author":"Jain","year":"2006","journal-title":"Clin. Perinatol."},{"key":"10.1016\/j.compag.2024.108825_b14","doi-asserted-by":"crossref","first-page":"458","DOI":"10.1111\/aogs.12850","article-title":"Obesity, polycystic ovary syndrome and breastfeeding: An observational study","volume":"5","author":"Joham","year":"2016","journal-title":"Nord. Fed. Soc. Obstet. Gynecol."},{"key":"10.1016\/j.compag.2024.108825_b15","unstructured":"Kurakin, A., Li, C.-L., Raffel, C., Berthelot, D., Cubuk, E.D., Zhang, H., Sohn, K., Carlini, N., Zhang, Z., 2020. FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence. In: Advances in Neural Information Processing Systems. NeurIPS, pp. 1\u201312."},{"key":"10.1016\/j.compag.2024.108825_b16","doi-asserted-by":"crossref","first-page":"5060","DOI":"10.3168\/jds.2017-14109","article-title":"Phenotypically divergent classification of preweaned heifer calves for feed efficiency indexes and their correlations with heat production and thermography","volume":"101 6","author":"Le\u00e3o","year":"2018","journal-title":"J. Dairy Sci."},{"key":"10.1016\/j.compag.2024.108825_b17","series-title":"Medical Image Computing and Computer Assisted Intervention","first-page":"391","article-title":"Rethinking breast lesion segmentation in ultrasound: A new video dataset and a baseline network","author":"Li","year":"2022"},{"key":"10.1016\/j.compag.2024.108825_b18","doi-asserted-by":"crossref","unstructured":"Lin, T., Doll\u00e1r, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017. Feature Pyramid Networks for Object Detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 936\u2013944.","DOI":"10.1109\/CVPR.2017.106"},{"key":"10.1016\/j.compag.2024.108825_b19","series-title":"Medical Image Computing and Computer Assisted Intervention","first-page":"472","article-title":"A novel deep learning system for breast lesion risk stratification in ultrasound images","author":"Liu","year":"2022"},{"issue":"2","key":"10.1016\/j.compag.2024.108825_b20","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.eng.2018.11.020","article-title":"Deep learning in medical ultrasound analysis: A review","volume":"5","author":"Liu","year":"2019","journal-title":"Engineering"},{"key":"10.1016\/j.compag.2024.108825_b21","series-title":"Fully convolutional networks for semantic segmentation","author":"Long","year":"2015"},{"key":"10.1016\/j.compag.2024.108825_b22","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1007\/s10911-015-9330-7","article-title":"Unsolved mysteries of the human mammary gland: Defining and redefining the critical questions from the lactation consultant\u2019s perspective","volume":"19","author":"Marasco","year":"2014","journal-title":"J. Mammary Gland. Biol. Neoplasia"},{"key":"10.1016\/j.compag.2024.108825_b23","doi-asserted-by":"crossref","first-page":"4289","DOI":"10.3168\/jds.S0022-0302(06)72475-4","article-title":"Developmental and nutritional regulation of the prepubertal heifer mammary gland: I. Parenchyma and fat pad mass and composition","volume":"89","author":"Meyer","year":"2006","journal-title":"J. Dairy Sci."},{"key":"10.1016\/j.compag.2024.108825_b24","series-title":"Milk, Mucosal Immunity and the Microbiome: Impact on the Neonate: 94th Nestl\u00e9 Nutrition Institute Workshop","article-title":"The evolution of lactation in mammalian species","author":"Oftedal","year":"2020"},{"issue":"4","key":"10.1016\/j.compag.2024.108825_b25","doi-asserted-by":"crossref","DOI":"10.3390\/app13042082","article-title":"DeepBreastCancerNet: A novel deep learning model for breast cancer detection using ultrasound images","volume":"13","author":"Raza","year":"2023","journal-title":"Appl. Sci."},{"key":"10.1016\/j.compag.2024.108825_b26","series-title":"Medical Image Computing and Computer-Assisted Intervention","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.compag.2024.108825_b27","doi-asserted-by":"crossref","first-page":"845","DOI":"10.3168\/jds.S0022-0302(83)81866-9","article-title":"Influence of amount fed on hormone concentration and their relationship to mammary growth in heifers","volume":"66","author":"Sejrsen","year":"1983","journal-title":"J. Dairy Sci."},{"key":"10.1016\/j.compag.2024.108825_b28","doi-asserted-by":"crossref","first-page":"793","DOI":"10.3168\/jds.S0022-0302(82)82268-6","article-title":"Influence of nutrition on mammary development in pre- and postpubertal heifers","volume":"65","author":"Sejrsen","year":"1982","journal-title":"J. Dairy Sci."},{"issue":"1","key":"10.1016\/j.compag.2024.108825_b29","doi-asserted-by":"crossref","first-page":"14609","DOI":"10.1038\/s41598-018-32975-1","article-title":"In utero heat stress alters the offspring epigenome","volume":"8","author":"Skibiel","year":"2018","journal-title":"Sci. Rep."},{"issue":"11","key":"10.1016\/j.compag.2024.108825_b30","doi-asserted-by":"crossref","DOI":"10.3390\/cancers14112663","article-title":"Dual-intended deep learning model for breast cancer diagnosis in ultrasound imaging","volume":"14","author":"Vigil","year":"2022","journal-title":"Cancers"},{"key":"10.1016\/j.compag.2024.108825_b31","doi-asserted-by":"crossref","first-page":"54310","DOI":"10.1109\/ACCESS.2021.3071301","article-title":"Deep learning in medical ultrasound image analysis: A review","volume":"9","author":"Wang","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.compag.2024.108825_b32","doi-asserted-by":"crossref","unstructured":"Wang, S., Meng, J., Yuan, J., Tan, Y.-P., 2019. Joint Representative Selection and Feature Learning: A Semi-Supervised Approach. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 1\u201312.","DOI":"10.1109\/CVPR.2019.00616"},{"key":"10.1016\/j.compag.2024.108825_b33","unstructured":"Xie, J., Girshick, R., Farhadi, A., 2016. Unsupervised deep embedding for clustering analysis. In: Proceedings of the 33rd International Conference on Machine Learning. ICML, pp. 478\u2013487."},{"key":"10.1016\/j.compag.2024.108825_b34","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1016\/j.neucom.2018.11.114","article-title":"Deep learning for ultrasound image caption generation based on object detection","volume":"392","author":"Zeng","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compag.2024.108825_b35","doi-asserted-by":"crossref","unstructured":"Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid Scene Parsing Network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 6230\u20136239.","DOI":"10.1109\/CVPR.2017.660"}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169924002163?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169924002163?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T08:00:54Z","timestamp":1717228854000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169924002163"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5]]},"references-count":35,"alternative-id":["S0168169924002163"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2024.108825","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2024,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A polar transformation augmentation approach for enhancing mammary gland segmentation in ultrasound images","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2024.108825","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"108825"}}