{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,6]],"date-time":"2024-07-06T20:58:05Z","timestamp":1720299485689},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,3,15]],"date-time":"2024-03-15T00:00:00Z","timestamp":1710460800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001584","name":"Department of Agriculture Food and the Marine","doi-asserted-by":"publisher","award":["16\/RC\/3835"],"id":[{"id":"10.13039\/501100001584","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001602","name":"Science Foundation Ireland","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001602","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100021525","name":"Insight SFI Research Centre for Data Analytics","doi-asserted-by":"publisher","award":["12\/RC\/2289"],"id":[{"id":"10.13039\/501100021525","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2024,4]]},"DOI":"10.1016\/j.compag.2024.108805","type":"journal-article","created":{"date-parts":[[2024,3,9]],"date-time":"2024-03-09T04:16:47Z","timestamp":1709957807000},"page":"108805","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["A Hybrid Model that Combines Machine Learning and Mechanistic Models for Useful Grass Growth Prediction"],"prefix":"10.1016","volume":"219","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5800-2525","authenticated-orcid":false,"given":"Eoin M.","family":"Kenny","sequence":"first","affiliation":[]},{"given":"Elodie","family":"Ruelle","sequence":"additional","affiliation":[]},{"given":"Mark T.","family":"Keane","sequence":"additional","affiliation":[]},{"given":"Laurence","family":"Shalloo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"7","key":"10.1016\/j.compag.2024.108805_b1","first-page":"07","article-title":"The end of theory: The data deluge makes the scientific method obsolete","volume":"16","author":"Anderson","year":"2008","journal-title":"Wired Mag."},{"issue":"5","key":"10.1016\/j.compag.2024.108805_b2","doi-asserted-by":"crossref","DOI":"10.1098\/rsbl.2017.0660","article-title":"Mechanistic models versus machine learning, a fight worth fighting for the biological community?","volume":"14","author":"Baker","year":"2018","journal-title":"Biol. Lett."},{"issue":"7","key":"10.1016\/j.compag.2024.108805_b3","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1145\/3448250","article-title":"Deep learning for AI","volume":"64","author":"Bengio","year":"2021","journal-title":"Commun. ACM"},{"key":"10.1016\/j.compag.2024.108805_b4","series-title":"Conceptual Basis, Formalisations and Parameterization of the STICS Crop Model","first-page":"1","article-title":"Conceptual basis, formalisations and parameterization of the STICS crop model","author":"Brisson","year":"2009"},{"key":"10.1016\/j.compag.2024.108805_b5","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.compag.2018.05.012","article-title":"Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review","volume":"151","author":"Chlingaryan","year":"2018","journal-title":"Comput. Electron. Agric."},{"issue":"2","key":"10.1016\/j.compag.2024.108805_b6","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1016\/j.ecolmodel.2008.09.015","article-title":"Modelling above-ground herbage mass for a wide range of grassland community types","volume":"220","author":"Duru","year":"2009","journal-title":"Ecol. Model."},{"key":"10.1016\/j.compag.2024.108805_b7","first-page":"37","article-title":"Herb\u2019sim: a model for reasoning the production and use of grass","volume":"201","author":"Duru","year":"2010","journal-title":"Fourrages"},{"issue":"4","key":"10.1016\/j.compag.2024.108805_b8","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pcbi.1010988","article-title":"Bridging the gap between mechanistic biological models and machine learning surrogates","volume":"19","author":"Gherman","year":"2023","journal-title":"PLoS Comput. Biol."},{"key":"10.1016\/j.compag.2024.108805_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.eja.2019.125952","article-title":"High-resolution assessment of French grassland dry matter and nitrogen yields","volume":"112","author":"Graux","year":"2020","journal-title":"Eur. J. Agron."},{"issue":"2","key":"10.1016\/j.compag.2024.108805_b10","doi-asserted-by":"crossref","first-page":"236","DOI":"10.3390\/rs12020236","article-title":"Prediction of winter wheat yield based on multi-source data and machine learning in China","volume":"12","author":"Han","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2024.108805_b11","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/j.compag.2017.01.029","article-title":"PastureBase Ireland: A grassland decision support system and national database","volume":"136","author":"Hanrahan","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2024.108805_b12","series-title":"2017 12th ACM\/IEEE International Conference on Human-Robot Interaction HRI","first-page":"303","article-title":"Improving robot controller transparency through autonomous policy explanation","author":"Hayes","year":"2017"},{"key":"10.1016\/j.compag.2024.108805_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecolmodel.2019.108925","article-title":"BASGRA_N: A model for grassland productivity, quality and greenhouse gas balance","volume":"417","author":"H\u00f6glind","year":"2020","journal-title":"Ecol. Model."},{"issue":"3","key":"10.1016\/j.compag.2024.108805_b14","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1080\/00750778.2013.865364","article-title":"Relationships between meteorological data and grass growth over time in the south of Ireland","volume":"46","author":"Hurtado-Uria","year":"2013","journal-title":"Irish Geogr."},{"key":"10.1016\/j.compag.2024.108805_b15","first-page":"1","article-title":"A comprehensive review on automation in agriculture using artificial intelligence","volume":"2","author":"Jha","year":"2019","journal-title":"Artif. Intell. Agric."},{"issue":"2","key":"10.1016\/j.compag.2024.108805_b16","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1111\/j.1365-2494.2006.00515.x","article-title":"Model predicting dynamics of biomass, structure and digestibility of herbage in managed permanent pastures. 1. Model description","volume":"61","author":"Jouven","year":"2006","journal-title":"Grass Forage Sci."},{"key":"10.1016\/j.compag.2024.108805_b17","series-title":"International Conference on Case-Based Reasoning","first-page":"172","article-title":"Predicting grass growth for sustainable dairy farming: A CBR system using Bayesian case-exclusion and post-hoc, personalized explanation-by-example (XAI)","author":"Kenny","year":"2019"},{"key":"10.1016\/j.compag.2024.108805_b18","unstructured":"Kenny, Eoin M., Ruelle, Elodie, Geoghegan, Anne, Temraz, Mohammed, Keane, Mark T., et al., 2021. Bayesian Case-Exclusion and Explainable AI (XAI) for Sustainable Farming. In: The 29th International Joint Conference on Artificial Intelligence-17th Pacific Rim International Conference on Artificial Intelligence (IJCAI-PRICAI-20), Yokohama, Japan, January 2021 (Conference Postponed Due To COVID-19 Pandemic). pp. 80\u201385."},{"key":"10.1016\/j.compag.2024.108805_b19","unstructured":"Kenny, Eoin M., Tucker, Mycal, Shah, Julie, 2023. Towards Interpretable Deep Reinforcement Learning with Human-Friendly Prototypes. In: The Eleventh International Conference on Learning Representations."},{"key":"10.1016\/j.compag.2024.108805_b20","first-page":"255","article-title":"A concordance correlation coefficient to evaluate reproducibility","author":"Lawrence","year":"1989","journal-title":"Biometrics"},{"issue":"12","key":"10.1016\/j.compag.2024.108805_b21","doi-asserted-by":"crossref","first-page":"1068","DOI":"10.1038\/nclimate2437","article-title":"Climate-smart agriculture for food security","volume":"4","author":"Lipper","year":"2014","journal-title":"Nat. Clim. Change"},{"key":"10.1016\/j.compag.2024.108805_b22","series-title":"Big Data: A Revolution That Will Transform How We Live, Work, and Think","first-page":"1143","author":"Mayer-Sch\u00f6nberger","year":"2013"},{"key":"10.1016\/j.compag.2024.108805_b23","first-page":"307","article-title":"A proposal for strength-of-agreement criteria for lin\u2019s concordance correlation coefficient","volume":"vol. 45","author":"McBride","year":"2005"},{"key":"10.1016\/j.compag.2024.108805_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecolmodel.2020.109345","article-title":"DynaGraM: A process-based model to simulate multi-species plant community dynamics in managed grasslands","volume":"439","author":"Moulin","year":"2021","journal-title":"Ecol. Model."},{"key":"10.1016\/j.compag.2024.108805_b25","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.eja.2018.06.010","article-title":"Development of the Moorepark st gilles grass growth model (MoSt GG model): A predictive model for grass growth for pasture based systems","volume":"99","author":"Ruelle","year":"2018","journal-title":"Eur. J. Agron.","ISSN":"http:\/\/id.crossref.org\/issn\/1161-0301","issn-type":"print"},{"key":"10.1016\/j.compag.2024.108805_b26","first-page":"841","article-title":"Grass growth prediction in Ireland to improve grazing management practice","author":"Ruelle","year":"2022","journal-title":"Grassland Heart Circular Sustain. Food Syst."},{"issue":"2\u20133","key":"10.1016\/j.compag.2024.108805_b27","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/S1161-0301(98)00027-6","article-title":"LINGRA, a sink\/source model to simulate grassland productivity in europe","volume":"9","author":"Schapendonk","year":"1998","journal-title":"Eur. J. Agron."},{"issue":"2","key":"10.1016\/j.compag.2024.108805_b28","first-page":"279","article-title":"A review of precision technologies in pasture-based dairying systems","volume":"59","author":"Shalloo","year":"2021","journal-title":"Irish J. Agric. Food Res."},{"key":"10.1016\/j.compag.2024.108805_b29","article-title":"Grass growth curve","author":"Teagasc","year":"2021","journal-title":"Teagasc"},{"key":"10.1016\/j.compag.2024.108805_b30","article-title":"Irish soil information system","author":"Teagasc","year":"2022","journal-title":"Teagasc"},{"key":"10.1016\/j.compag.2024.108805_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105709","article-title":"Crop yield prediction using machine learning: A systematic literature review","volume":"177","author":"Van Klompenburg","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2024.108805_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.jcp.2020.109913","article-title":"B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data","volume":"425","author":"Yang","year":"2021","journal-title":"J. Comput. Phys."},{"issue":"4","key":"10.1016\/j.compag.2024.108805_b33","doi-asserted-by":"crossref","first-page":"546","DOI":"10.1139\/cgj-2020-0751","article-title":"Bayesian neural network-based uncertainty modelling: application to soil compressibility and undrained shear strength prediction","volume":"59","author":"Zhang","year":"2022","journal-title":"Can. Geotech. J."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169924001960?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169924001960?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T08:00:52Z","timestamp":1717228852000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169924001960"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4]]},"references-count":33,"alternative-id":["S0168169924001960"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2024.108805","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2024,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A Hybrid Model that Combines Machine Learning and Mechanistic Models for Useful Grass Growth Prediction","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2024.108805","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"108805"}}