{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:08:44Z","timestamp":1732043324805},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T00:00:00Z","timestamp":1711929600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2024,4]]},"DOI":"10.1016\/j.compag.2024.108795","type":"journal-article","created":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T05:32:35Z","timestamp":1709271155000},"page":"108795","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Automated segmentation of individual leafy potato stems after canopy consolidation using YOLOv8x with spatial and spectral features for UAV-based dense crop identification"],"prefix":"10.1016","volume":"219","author":[{"given":"Hanhui","family":"Jiang","sequence":"first","affiliation":[]},{"given":"Bryan","family":"Gilbert Murengami","sequence":"additional","affiliation":[]},{"given":"Liguo","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Chi","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Ciaran","family":"Johnson","sequence":"additional","affiliation":[]},{"given":"Fernando","family":"Auat Cheein","sequence":"additional","affiliation":[]},{"given":"Spyros","family":"Fountas","sequence":"additional","affiliation":[]},{"given":"Rui","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3253-2637","authenticated-orcid":false,"given":"Longsheng","family":"Fu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2024.108795_b0005","doi-asserted-by":"crossref","first-page":"2615","DOI":"10.1109\/JSTARS.2018.2849363","article-title":"Building footprint extraction from VHR remote sensing images combined with normalized DSMs using fused fully convolutional networks","volume":"11","author":"Bittner","year":"2018","journal-title":"IEEE J Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.compag.2024.108795_b0010","first-page":"67","article-title":"Rapid maximum likelihood classification","volume":"57","author":"Bolstad","year":"1991","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"10.1016\/j.compag.2024.108795_b0015","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1016\/j.isprsjprs.2018.08.010","article-title":"A new method for 3D individual tree extraction using multispectral airborne LiDAR point clouds","volume":"144","author":"Dai","year":"2018","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2024.108795_b0020","first-page":"012080","article-title":"UAV image crop classification based on deep learning with spatial and spectral features","volume":"Vol. 783, No. 1","author":"Fan","year":"2021"},{"key":"10.1016\/j.compag.2024.108795_b0025","doi-asserted-by":"crossref","first-page":"1603","DOI":"10.1111\/tpj.14799","article-title":"Automatic wheat ear counting using machine learning based on RGB UAV imagery","volume":"103","author":"Fernandez-Gallego","year":"2020","journal-title":"Plant J."},{"key":"10.1016\/j.compag.2024.108795_b0030","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2019.105165","article-title":"Fruit detection and 3D location using instance segmentation neural networks and structure-from-motion photogrammetry","volume":"169","author":"Gen\u00e9-Mola","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2024.108795_b0035","doi-asserted-by":"crossref","first-page":"1638","DOI":"10.3389\/fpls.2018.01638","article-title":"Clustering field-based maize phenotyping of plant-height growth and canopy spectral dynamics using a UAV remote-sensing approach","volume":"9","author":"Han","year":"2018","journal-title":"Front. Plant Sci."},{"key":"10.1016\/j.compag.2024.108795_b0040","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.isprsjprs.2021.06.003","article-title":"Automated tree-crown and height detection in a young forest plantation using mask region-based convolutional neural network (mask R-CNN)","volume":"178","author":"Hao","year":"2021","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2024.108795_b0045","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.isprsjprs.2019.05.008","article-title":"Pixel size of aerial imagery constrains the applications of unmanned aerial vehicle in crop breeding","volume":"154","author":"Hu","year":"2019","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2024.108795_b0050","doi-asserted-by":"crossref","first-page":"24","DOI":"10.3390\/rs9070647","article-title":"Poppy crop height and capsule volume estimation from a single UAS flight","volume":"9","author":"Iqbal","year":"2017","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2024.108795_b0055","doi-asserted-by":"crossref","first-page":"1156734","DOI":"10.3389\/fpls.2023.1156734","article-title":"Machinery for potato harvesting: a state-of-the-art review","volume":"14","author":"Johnson","year":"2023","journal-title":"Front. Plant Sci."},{"key":"10.1016\/j.compag.2024.108795_b0060","article-title":"Evaluation of decision fusions for classifying karst wetland vegetation using one-class and multi-class CNN models with high-resolution UAV images","volume":"14","author":"Li","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2024.108795_b0065","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1186\/s13007-019-0399-7","article-title":"The estimation of crop emergence in potatoes by UAV RGB imagery","volume":"15","author":"Li","year":"2019","journal-title":"Plant Methods"},{"key":"10.1016\/j.compag.2024.108795_b0070","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.isprsjprs.2020.02.013","article-title":"Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging","volume":"162","author":"Li","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2024.108795_b0075","doi-asserted-by":"crossref","first-page":"1214006","DOI":"10.3389\/fpls.2023.1214006","article-title":"Methodological evolution of potato yield prediction: a comprehensive review","volume":"14","author":"Lin","year":"2023","journal-title":"Front. Plant Sci."},{"key":"10.1016\/j.compag.2024.108795_b0080","doi-asserted-by":"crossref","DOI":"10.1016\/j.agrformet.2020.108231","article-title":"A field-based high-throughput method for acquiring canopy architecture using unmanned aerial vehicle images","volume":"296","author":"Liu","year":"2021","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2024.108795_b0085","doi-asserted-by":"crossref","first-page":"2004","DOI":"10.11834\/jrs.20210419","article-title":"Estimation of plant height and above ground biomass of potato based on UAV digital image","volume":"25","author":"Liu","year":"2021","journal-title":"Natl. Remote Sens. Bull."},{"key":"10.1016\/j.compag.2024.108795_b0090","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107089","article-title":"Remote-sensing estimation of potato above-ground biomass based on spectral and spatial features extracted from high-definition digital camera images","volume":"198","author":"Liu","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2024.108795_b0095","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106484","article-title":"Automatic branch detection of jujube trees based on 3D reconstruction for dormant pruning using the deep learning-based method","volume":"190","author":"Ma","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2024.108795_b0100","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105277","article-title":"Deep learning based segmentation for automated training of apple trees on trellis wires","volume":"170","author":"Majeed","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2024.108795_b0105","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.isprsjprs.2018.12.015","article-title":"Automated detection and measurement of individual sorghum panicles using density-based clustering of terrestrial lidar data","volume":"149","author":"Malambo","year":"2019","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2024.108795_b0110","doi-asserted-by":"crossref","first-page":"2705","DOI":"10.3390\/rs13142705","article-title":"Mapping potato plant density variation using aerial imagery and deep learning techniques for precision agriculture","volume":"13","author":"Mhango","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2024.108795_b0115","doi-asserted-by":"crossref","first-page":"643","DOI":"10.1007\/s11119-021-09853-4","article-title":"Applying colour-based feature extraction and transfer learning to develop a high throughput inference system for potato (Solanum tuberosum L.) stems with images from unmanned aerial vehicles after canopy consolidation","volume":"23","author":"Mhango","year":"2022","journal-title":"Precis. Agric."},{"issue":"2","key":"10.1016\/j.compag.2024.108795_b0120","first-page":"1","article-title":"Development status and trends of space-air-groound integrated information sensing and fusion technology","volume":"4","author":"Nie","year":"2023","journal-title":"J. Intell. Agric. Mech."},{"key":"10.1016\/j.compag.2024.108795_b0125","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107297","article-title":"HSI-TransUNet: a transformer based semantic segmentation model for crop mapping from UAV hyperspectral imagery","volume":"201","author":"Niu","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2024.108795_b0130","doi-asserted-by":"crossref","first-page":"1171","DOI":"10.1007\/s11119-020-09777-5","article-title":"Semantic segmentation of citrus-orchard using deep neural networks and multispectral UAV-based imagery","volume":"22","author":"Osco","year":"2021","journal-title":"Precis. Agric."},{"key":"10.1016\/j.compag.2024.108795_b0135","doi-asserted-by":"crossref","first-page":"1188286","DOI":"10.3389\/fpls.2023.1188286","article-title":"Point clouds segmentation of rapeseed siliques based on sparse-dense point clouds mapping","volume":"14","author":"Qiao","year":"2023","journal-title":"Front. Plant Sci."},{"key":"10.1016\/j.compag.2024.108795_b0140","doi-asserted-by":"crossref","first-page":"665","DOI":"10.3390\/rs9070665","article-title":"Regression kriging for improving crop height models fusing ultra-sonic sensing with UAV imagery","volume":"9","author":"Schirrmann","year":"2017","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2024.108795_b0145","doi-asserted-by":"crossref","first-page":"5477","DOI":"10.3390\/s19245477","article-title":"Object-based image analysis applied to low altitude aerial imagery for potato plant trait retrieval and pathogen detection","volume":"19","author":"Siebring","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2024.108795_b0150","doi-asserted-by":"crossref","first-page":"787","DOI":"10.3390\/plants9060787","article-title":"Radiation interception, conversion and partitioning efficiency in potato landraces: how far are we from the optimum?","volume":"9","author":"Silva-D\u00edaz","year":"2020","journal-title":"Plants"},{"key":"10.1016\/j.compag.2024.108795_b0155","doi-asserted-by":"crossref","first-page":"17","DOI":"10.3390\/rs12010017","article-title":"Biomass and crop height estimation of different crops using UAV-based LiDAR","volume":"12","author":"ten Harkel","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2024.108795_b0160","first-page":"181","article-title":"Terrestrial laser scanning for plant height measurement and biomass estimation of maize, international archives of the photogrammetry, remote sensing and spatial","author":"Tilly","year":"2014","journal-title":"Inf. Sci."},{"key":"10.1016\/j.compag.2024.108795_b0165","unstructured":"UN Food & Agriculture Organization, 2023. Production of potatoes by the world. https:\/\/www.fao.org\/faostat\/en\/#data. Accessed October 11, 2023."},{"key":"10.1016\/j.compag.2024.108795_b0170","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/j.isprsjprs.2023.05.016","article-title":"High-throughput calculation of organ-scale traits with reconstructed accurate 3D canopy structures using a UAV RGB camera with an advanced cross-circling oblique route","volume":"201","author":"Xiao","year":"2023","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2024.108795_b0175","doi-asserted-by":"crossref","first-page":"77","DOI":"10.5194\/isprs-annals-V-3-2022-77-2022","article-title":"Improving semantic segmentation performance by jointly using high resolution remote sensing image and NDSM","author":"Yang","year":"2022","journal-title":"ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences."},{"key":"10.1016\/j.compag.2024.108795_b0180","first-page":"6286","article-title":"Accurate wheat lodging extraction from multi-channel uav images using a lightweight network model","volume":"21","author":"Yang","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2024.108795_b0185","doi-asserted-by":"crossref","first-page":"9850486","DOI":"10.34133\/2022\/9850486","article-title":"Deep learning for strawberry canopy delineation and biomass prediction from high-resolution images","volume":"2022","author":"Zheng","year":"2022","journal-title":"Plant Phenomics"}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169924001868?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169924001868?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,3,27]],"date-time":"2024-03-27T04:22:13Z","timestamp":1711513333000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169924001868"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,4]]},"references-count":37,"alternative-id":["S0168169924001868"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2024.108795","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2024,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Automated segmentation of individual leafy potato stems after canopy consolidation using YOLOv8x with spatial and spectral features for UAV-based dense crop identification","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2024.108795","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108795"}}