{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T17:04:13Z","timestamp":1726851853568},"reference-count":66,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.compag.2023.108393","type":"journal-article","created":{"date-parts":[[2023,11,10]],"date-time":"2023-11-10T20:31:27Z","timestamp":1699648287000},"page":"108393","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Estimating pre-compression stress in agricultural Soils: Integrating spectral indices and soil properties through machine learning"],"prefix":"10.1016","volume":"215","author":[{"given":"Golnaz","family":"Ebrahimzadeh","sequence":"first","affiliation":[]},{"given":"Nafiseh","family":"Yaghmaeian Mahabadi","sequence":"additional","affiliation":[]},{"given":"Hossein","family":"Bayat","sequence":"additional","affiliation":[]},{"given":"HamidReza","family":"MatinFar","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2023.108393_b0005","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.coesh.2018.05.003","article-title":"Mapping soil compaction\u2013A review","volume":"5","author":"Alaoui","year":"2018","journal-title":"Curr. Opin. Environ. Sci. Health"},{"key":"10.1016\/j.compag.2023.108393_b0010","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1016\/j.still.2014.09.002","article-title":"Quantifying the effect of soil physical properties on the compressive characteristics of two arable soils using uniaxial compression tests","volume":"145","author":"An","year":"2015","journal-title":"Soil Tillage Res."},{"year":"2004","series-title":"Estimation of Compression Properties of Clayey Soils","author":"Bartlett","key":"10.1016\/j.compag.2023.108393_b0015"},{"key":"10.1016\/j.compag.2023.108393_b0020","doi-asserted-by":"crossref","first-page":"S38","DOI":"10.1016\/j.rse.2008.09.019","article-title":"Using imaging spectroscopy to study soil properties","volume":"113","author":"Ben-Dor","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2023.108393_b0025","doi-asserted-by":"crossref","unstructured":"Bigham, J., Ciolkosz, E., Luxmoore, R., 1993. Soil Color. SSSA Special Publication no. 31. Soil Science Society of America Inc., Madison, WI.","DOI":"10.2136\/sssaspecpub31"},{"key":"10.1016\/j.compag.2023.108393_b9005","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1016\/j.isprsjprs.2009.06.004","article-title":"Object based image analysis for remote sensing","volume":"65","author":"Blaschke","year":"2010","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2023.108393_b9030","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0088741","article-title":"Comparative analysis of normalised difference spectral indices derived from MODIS for detecting surface water in flooded rice cropping systems","volume":"9","author":"Boschetti","year":"2014","journal-title":"PloS one"},{"key":"10.1016\/j.compag.2023.108393_b0030","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random Forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"year":"1984","series-title":"Classification and regression trees","author":"Breiman","key":"10.1016\/j.compag.2023.108393_b0035"},{"key":"10.1016\/j.compag.2023.108393_b9015","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1080\/07038992.1996.10855178","article-title":"Evaluation of vegetation indices and a modified simple ratio for boreal applications","volume":"22","author":"Chen","year":"1996","journal-title":"Can. J. Remote. Sens."},{"key":"10.1016\/j.compag.2023.108393_b0040","doi-asserted-by":"crossref","unstructured":"Chen, Q., Miao, F., Wang, H., Xu, Z.X., Tang, Z., Yang, L., Qi, S., 2020. Downscaling of satellite remote sensing soil moisture products over the Tibetan Plateau based on the random forest algorithm: Preliminary results. Earth Space Sci., 7, e2020EA001265.","DOI":"10.1029\/2020EA001265"},{"key":"10.1016\/j.compag.2023.108393_b0045","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.geoderma.2017.10.009","article-title":"Building a pedotransfer function for soil bulk density on regional dataset and testing its validity over a larger area","volume":"312","author":"Chen","year":"2018","journal-title":"Geoderma"},{"year":"2022","series-title":"A remote sensing approach to estimate the load bearing capacity of soil","author":"de Souza","key":"10.1016\/j.compag.2023.108393_b0050"},{"key":"10.1016\/j.compag.2023.108393_b0055","doi-asserted-by":"crossref","first-page":"7063","DOI":"10.3390\/s110707063","article-title":"Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content","volume":"11","author":"Delegido","year":"2011","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2023.108393_b0060","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.still.2014.06.008","article-title":"Toward a tool aimed to quantify soil compaction risks at a regional scale: Application to Wallonia (Belgium)","volume":"144","author":"D'Or","year":"2014","journal-title":"Soil Tillage Res."},{"key":"10.1016\/j.compag.2023.108393_b0065","doi-asserted-by":"crossref","first-page":"802","DOI":"10.1111\/j.1365-2656.2008.01390.x","article-title":"A working guide to boosted regression trees","volume":"77","author":"Elith","year":"2008","journal-title":"J. Anim. Ecol."},{"key":"10.1016\/j.compag.2023.108393_b9000","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/0273-1177(89)90481-X","article-title":"Remote sensing of arid soil surface color with Landsat thematic mapper","volume":"9","author":"Escadafal","year":"1989","journal-title":"Adv. Space Res"},{"key":"10.1016\/j.compag.2023.108393_b0070","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.isprsjprs.2013.04.007","article-title":"Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation","volume":"82","author":"Frampton","year":"2013","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2023.108393_b0075","first-page":"1189","article-title":"Greedy function approximation: a gradient boosting machine","author":"Friedman","year":"2001","journal-title":"Ann. Stat."},{"key":"10.1016\/j.compag.2023.108393_b0080","doi-asserted-by":"crossref","unstructured":"Gee, G., Bauder, J., 1986. Particle-size analysis 1. Methods of soil analysis: part 1\u2014physical and mineralogical methods,(methodsofsoilan1), pp. 383\u2013411.","DOI":"10.2136\/sssabookser5.1.2ed.c15"},{"key":"10.1016\/j.compag.2023.108393_b0085","first-page":"294","article-title":"Generating soil salinity, soil moisture, soil pH from satellite imagery and its analysis","volume":"7","author":"Ghazali","year":"2020","journal-title":"Inform. Process. Agric."},{"key":"10.1016\/j.compag.2023.108393_b9020","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/S0034-4257(96)00072-7","article-title":"Use of a green channel in remote sensing of global vegetation from EOS-MODIS","volume":"58","author":"Gitelson","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2023.108393_b0090","doi-asserted-by":"crossref","unstructured":"Grossman, R., Reinsch, T., 2002. 2.1 Bulk density and linear extensibility. Methods of soil analysis: Part 4 physical methods 5, 201\u2013228.","DOI":"10.2136\/sssabookser5.4.c9"},{"key":"10.1016\/j.compag.2023.108393_b0095","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.geoderma.2015.11.014","article-title":"An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping","volume":"265","author":"Heung","year":"2016","journal-title":"Geoderma"},{"key":"10.1016\/j.compag.2023.108393_b0100","doi-asserted-by":"crossref","first-page":"2875","DOI":"10.3390\/s18092875","article-title":"Swcti: Surface water content temperature index for assessment of surface soil moisture status","volume":"18","author":"Hong","year":"2018","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2023.108393_b9025","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/0034-4257(89)90046-1","article-title":"Detection of changes in leaf water content using near-and middle-infrared reflectances","volume":"30","author":"Hunt","year":"1989","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2023.108393_b0105","doi-asserted-by":"crossref","first-page":"778","DOI":"10.3390\/rs11070778","article-title":"Comparison of multi-resolution optical Landsat-8, Sentinel-2 and radar Sentinel-1 data for automatic lineament extraction: A case study of Alichur area, SE Pamir","volume":"11","author":"Javhar","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2023.108393_b0110","doi-asserted-by":"crossref","DOI":"10.1016\/j.still.2019.104293","article-title":"Historical increase in agricultural machinery weights enhanced soil stress levels and adversely affected soil functioning","volume":"194","author":"Keller","year":"2019","journal-title":"Soil Tillage Res."},{"key":"10.1016\/j.compag.2023.108393_b0115","doi-asserted-by":"crossref","first-page":"3783","DOI":"10.3390\/rs12223783","article-title":"Remote sensing in agriculture\u2014accomplishments, limitations, and opportunities","volume":"12","author":"Khanal","year":"2020","journal-title":"Remote Sens. (Basel)"},{"key":"10.1016\/j.compag.2023.108393_b0120","series-title":"Tracks High Axle Loads","article-title":"An empirical model for estimating corn yield loss from compaction events with tires vs","author":"Klopfenstein","year":"2016"},{"key":"10.1016\/j.compag.2023.108393_b0125","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.1007\/s11629-019-5829-5","article-title":"Micromorphological features of soils formed on calcium carbonate\u2013rich slope deposits in the Polish Carpathians","volume":"17","author":"Kowalska","year":"2020","journal-title":"J. Mt. Sci."},{"key":"10.1016\/j.compag.2023.108393_b0130","doi-asserted-by":"crossref","first-page":"667","DOI":"10.13031\/2013.30058","article-title":"Investigation of the effects of soil compaction in cotton","volume":"53","author":"Kulkarni","year":"2010","journal-title":"Trans. ASABE"},{"key":"10.1016\/j.compag.2023.108393_b0135","doi-asserted-by":"crossref","first-page":"70","DOI":"10.3390\/hydrology10030070","article-title":"Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand","volume":"10","author":"Laonamsai","year":"2023","journal-title":"Hydrology"},{"key":"10.1016\/j.compag.2023.108393_b0140","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1016\/j.rse.2004.01.007","article-title":"Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis","volume":"90","author":"Lawrence","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2023.108393_b0145","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1111\/j.1475-2743.1994.tb00455.x","article-title":"Carbon storage and other properties of soils under agriculture and natural vegetation in Sao Paulo State, Brazil","volume":"10","author":"Lepsch","year":"1994","journal-title":"Soil Use Manag."},{"key":"10.1016\/j.compag.2023.108393_b0150","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/S0016-7061(03)00097-1","article-title":"Quantification of compaction effects on soil physical properties and crop growth","volume":"116","author":"Lipiec","year":"2003","journal-title":"Geoderma"},{"key":"10.1016\/j.compag.2023.108393_b9040","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/S0034-4257(98)00030-3","article-title":"Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil color of an arid environment","volume":"66","author":"Mathieu","year":"1998","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2023.108393_b0155","doi-asserted-by":"crossref","first-page":"272","DOI":"10.1016\/j.geoderma.2006.03.051","article-title":"Spectral soil analysis and inference systems: A powerful combination for solving the soil data crisis","volume":"136","author":"McBratney","year":"2006","journal-title":"Geoderma"},{"key":"10.1016\/j.compag.2023.108393_b0160","doi-asserted-by":"crossref","first-page":"373","DOI":"10.2136\/sssaj1996.03615995006000020007x","article-title":"Overconsolidation in agricultural soils: II. Pedotransfer functions for estimating preconsolidation stress","volume":"60","author":"McBride","year":"1996","journal-title":"Soil Sci. Soc. Am. J."},{"key":"10.1016\/j.compag.2023.108393_b9035","doi-asserted-by":"crossref","first-page":"1425","DOI":"10.1080\/01431169608948714","article-title":"The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features","volume":"17","author":"McFeeters","year":"1996","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2023.108393_b0165","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1016\/j.geoderma.2019.01.025","article-title":"Is it possible to map subsurface soil attributes by satellite spectral transfer models?","volume":"343","author":"Mendes","year":"2019","journal-title":"Geoderma"},{"key":"10.1016\/j.compag.2023.108393_b0170","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1016\/j.geoderma.2007.04.028","article-title":"Spatial prediction of soil properties using EBLUP with the Mat\u00e9rn covariance function","volume":"140","author":"Minasny","year":"2007","journal-title":"Geoderma"},{"key":"10.1016\/j.compag.2023.108393_b0175","doi-asserted-by":"crossref","DOI":"10.1016\/j.energy.2020.117803","article-title":"The effect of the tractor driving system on its performance and fuel consumption","volume":"202","author":"Moinfar","year":"2020","journal-title":"Energy"},{"key":"10.1016\/j.compag.2023.108393_b0180","first-page":"275","article-title":"Land suitability evaluation for irrigating wheat by geopedological approach and geographic information system: A case study of Qazvin plain, Iran","volume":"6","author":"Mousavi","year":"2017","journal-title":"Eurasian J. Soil Sci."},{"key":"10.1016\/j.compag.2023.108393_b0185","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1007\/s13593-011-0071-8","article-title":"Soil compaction impact and modelling A Review","volume":"33","author":"Nawaz","year":"2013","journal-title":"Agron. Sustain. Develop."},{"key":"10.1016\/j.compag.2023.108393_b0190","doi-asserted-by":"crossref","DOI":"10.1016\/j.geoderma.2022.115726","article-title":"Developing pedotransfer functions for predicting soil bulk density in Campania","volume":"412","author":"Palladino","year":"2022","journal-title":"Geoderma"},{"key":"10.1016\/j.compag.2023.108393_b9010","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/0034-4257(95)00186-7","article-title":"Optimization of soil-adjusted vegetation indices","volume":"55","author":"Rondeaux","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2023.108393_b0195","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.aeolia.2011.11.004","article-title":"Do dune sands redden with age? The case of the northwestern Negev dunefield, Israel","volume":"5","author":"Roskin","year":"2012","journal-title":"Aeolian Res."},{"key":"10.1016\/j.compag.2023.108393_b0200","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.rse.2017.05.041","article-title":"The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations","volume":"198","author":"Sadeghi","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2023.108393_b0205","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1007\/978-0-387-21579-2_9","article-title":"The boosting approach to machine learning: An overview","author":"Schapire","year":"2003","journal-title":"Nonlinear Estimation Classification"},{"key":"10.1016\/j.compag.2023.108393_b0210","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.geoderma.2018.01.028","article-title":"Models for prediction of soil precompression stress from readily available soil properties","volume":"320","author":"Schj\u00f8nning","year":"2018","journal-title":"Geoderma"},{"key":"10.1016\/j.compag.2023.108393_b0215","first-page":"35","article-title":"Subsoil compaction of a clay soil in South-East Norway and its amelioration after 5 years","author":"Seehusen","year":"2021","journal-title":"Int. Agrophys."},{"key":"10.1016\/j.compag.2023.108393_b0220","doi-asserted-by":"crossref","first-page":"10056","DOI":"10.1007\/s11356-017-8421-y","article-title":"Soil compaction effects on soil health and cropproductivity: an overview","volume":"24","author":"Shah","year":"2017","journal-title":"Environ. Sci. Pollut. Res."},{"key":"10.1016\/j.compag.2023.108393_b0225","first-page":"1","article-title":"A review on the effect of soil compaction and its management for sustainable crop production","author":"Shaheb","year":"2021","journal-title":"J. Biosyst. Eng."},{"key":"10.1016\/j.compag.2023.108393_b0230","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.proenv.2011.07.013","article-title":"Plot-level forest volume estimation using airborne laser scanner and TM data, comparison of boosting and random forest tree regression algorithms","volume":"7","author":"Shataeea","year":"2011","journal-title":"Procedia Environ. Sci."},{"key":"10.1016\/j.compag.2023.108393_b0235","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.still.2018.03.019","article-title":"Numerical modeling of soil compaction in a sugarcane crop using the finite element method","volume":"181","author":"Silva","year":"2018","journal-title":"Soil Tillage Res."},{"key":"10.1016\/j.compag.2023.108393_b0240","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/S0065-2113(10)07005-7","article-title":"Visible and near infrared spectroscopy in soil science","volume":"107","author":"Stenberg","year":"2010","journal-title":"Adv. Agron."},{"key":"10.1016\/j.compag.2023.108393_b0245","doi-asserted-by":"crossref","DOI":"10.1016\/j.fcr.2020.108013","article-title":"The ability of maize roots to grow through compacted soil is not dependent on the amount of roots formed","volume":"264","author":"Vanhees","year":"2021","journal-title":"Field Crop. Res."},{"key":"10.1016\/j.compag.2023.108393_b0250","doi-asserted-by":"crossref","DOI":"10.2136\/vzj2015.09.0131","article-title":"Modeling soil processes: Review, key challenges, and new perspectives","volume":"15","author":"Vereecken","year":"2016","journal-title":"Vadose Zone J."},{"key":"10.1016\/j.compag.2023.108393_b9045","doi-asserted-by":"crossref","first-page":"425","DOI":"10.1016\/j.ecolind.2018.01.049","article-title":"Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia","volume":"88","author":"Wang","year":"2018","journal-title":"Ecol. Indic."},{"key":"10.1016\/j.compag.2023.108393_b0255","unstructured":"Wilding, L., 1985. Spatial variability: its documentation, accomodation and implication to soil surveys, Soil spatial variability, Las Vegas NV, 30 November-1 December 1984, pp. 166-194."},{"key":"10.1016\/j.compag.2023.108393_b0260","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.rse.2019.01.039","article-title":"Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach","volume":"224","author":"Xu","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2023.108393_b0265","doi-asserted-by":"crossref","first-page":"870","DOI":"10.1016\/j.ecolind.2015.08.036","article-title":"Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem","volume":"60","author":"Yang","year":"2016","journal-title":"Ecol. Ind."},{"issue":"9","key":"10.1016\/j.compag.2023.108393_b9050","first-page":"1626","article-title":"A new method for variable selection in linear regression based on mean square error","volume":"45","author":"Zhang","year":"2018","journal-title":"J. Appl. Stat."},{"key":"10.1016\/j.compag.2023.108393_b0270","unstructured":"Zhang, H., Nettleton, D., Zhu, Z., 2019. Regression-enhanced random forests. arXiv preprint arXiv:1904.10416."},{"key":"10.1016\/j.compag.2023.108393_b0275","doi-asserted-by":"crossref","first-page":"4585","DOI":"10.1080\/01431161.2013.779046","article-title":"VSDI: a visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing","volume":"34","author":"Zhang","year":"2013","journal-title":"Int. J. Remote Sens."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923007810?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923007810?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,11]],"date-time":"2023-12-11T10:53:18Z","timestamp":1702291998000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169923007810"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":66,"alternative-id":["S0168169923007810"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.108393","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Estimating pre-compression stress in agricultural Soils: Integrating spectral indices and soil properties through machine learning","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.108393","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108393"}}