{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T11:29:35Z","timestamp":1743161375049},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.compag.2023.108371","type":"journal-article","created":{"date-parts":[[2023,10,29]],"date-time":"2023-10-29T16:34:26Z","timestamp":1698597266000},"page":"108371","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Identification of chrysanthemum using hyperspectral imaging based on few-shot class incremental learning"],"prefix":"10.1016","volume":"215","author":[{"given":"Zeyi","family":"Cai","sequence":"first","affiliation":[]},{"given":"Mengyu","family":"He","sequence":"additional","affiliation":[]},{"given":"Cheng","family":"Li","sequence":"additional","affiliation":[]},{"given":"Hengnian","family":"Qi","sequence":"additional","affiliation":[]},{"given":"Ruibin","family":"Bai","sequence":"additional","affiliation":[]},{"given":"Jian","family":"Yang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6760-3154","authenticated-orcid":false,"given":"Chu","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2023.108371_b0005","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2023.104704","article-title":"Novel prediction model on OSCC histopathological images via deep transfer learning combined with Grad-CAM interpretation","volume":"83","author":"Afify","year":"2023","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.compag.2023.108371_b0010","doi-asserted-by":"crossref","first-page":"303","DOI":"10.32604\/csse.2023.034374","article-title":"Hyperspectral images-based crop classification scheme for agricultural remote sensing","volume":"46","author":"Ali","year":"2023","journal-title":"Comput. Syst. Sci. Eng."},{"key":"10.1016\/j.compag.2023.108371_b0015","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1007\/s12145-022-00929-x","article-title":"Multipath feature fusion for hyperspectral image classification based on hybrid 3D\/2D CNN and squeeze-excitation network","volume":"16","author":"Ari","year":"2023","journal-title":"Earth Sci. Inform."},{"key":"10.1016\/j.compag.2023.108371_b0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.foodchem.2023.136169","article-title":"Identification of geographical origins of Radix Paeoniae Alba using hyperspectral imaging with deep learning-based fusion approaches","volume":"422","author":"Cai","year":"2023","journal-title":"Food Chem."},{"key":"10.1016\/j.compag.2023.108371_b0025","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1016\/j.chmed.2021.04.014","article-title":"How to improve CHMs quality: Enlighten from CHMs ecological cultivation","volume":"13","author":"Cao","year":"2021","journal-title":"Chin. Herb. Med."},{"key":"10.1016\/j.compag.2023.108371_b0030","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1016\/j.jpba.2016.09.008","article-title":"A rapid integrated bioactivity evaluation system based on near-infrared spectroscopy for quality control of Flos Chrysanthemi","volume":"131","author":"Ding","year":"2016","journal-title":"J. Pharm. Biomed. Anal."},{"key":"10.1016\/j.compag.2023.108371_b0035","doi-asserted-by":"crossref","DOI":"10.3389\/fnut.2021.680357","article-title":"Application of visible\/infrared spectroscopy and hyperspectral imaging with machine learning techniques for identifying food varieties and geographical origins","volume":"8","author":"Feng","year":"2021","journal-title":"Front. Nutr."},{"key":"10.1016\/j.compag.2023.108371_b0040","doi-asserted-by":"crossref","first-page":"4479","DOI":"10.1007\/s00521-022-07933-8","article-title":"3D residual spatial\u2013spectral convolution network for hyperspectral remote sensing image classification","volume":"35","author":"Firat","year":"2023","journal-title":"Neural Comput. & Applic."},{"key":"10.1016\/j.compag.2023.108371_b0045","doi-asserted-by":"crossref","first-page":"1427","DOI":"10.1038\/s41598-023-28588-y","article-title":"Cross-domain few-shot learning based on pseudo-Siamese neural network","volume":"13","author":"Gong","year":"2023","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compag.2023.108371_b0050","first-page":"965","article-title":"Classification of tweets data based on polarity using improved RBF kernel of SVM","volume":"15","author":"Gopi","year":"2023","journal-title":"Int. J. Inf. Technol."},{"key":"10.1016\/j.compag.2023.108371_b0055","doi-asserted-by":"crossref","first-page":"15473","DOI":"10.1038\/s41598-022-19831-z","article-title":"Transformer based on channel-spatial attention for accurate classification of scenes in remote sensing image","volume":"12","author":"Guo","year":"2022","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compag.2023.108371_b0060","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.sajb.2021.09.007","article-title":"Chrysanthemum, an ornamental genus with considerable medicinal value: A comprehensive review","volume":"144","author":"Hadizadeh","year":"2022","journal-title":"South Afr. J. Bot."},{"key":"10.1016\/j.compag.2023.108371_b0065","doi-asserted-by":"crossref","DOI":"10.1016\/j.postharvbio.2022.112226","article-title":"Rapid origin identification of chrysanthemum morifolium using laser-induced breakdown spectroscopy and chemometrics","volume":"197","author":"Hao","year":"2023","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2023.108371_b0070","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1080\/21642583.2021.1901159","article-title":"A novel Chinese herbal medicine classification approach based on EfficientNet","volume":"9","author":"Hao","year":"2021","journal-title":"Syst. Sci. Control Eng."},{"key":"10.1016\/j.compag.2023.108371_b0075","doi-asserted-by":"crossref","first-page":"2395","DOI":"10.3390\/molecules23092395","article-title":"Determination of total polysaccharides and total flavonoids in chrysanthemum morifolium using near-infrared hyperspectral imaging and multivariate analysis","volume":"23","author":"He","year":"2018","journal-title":"Molecules"},{"key":"10.1016\/j.compag.2023.108371_b0080","doi-asserted-by":"crossref","first-page":"1959","DOI":"10.3390\/app9091959","article-title":"Nondestructive determination and visualization of quality attributes in fresh and dry chrysanthemum morifolium using near-infrared hyperspectral imaging","volume":"9","author":"He","year":"2019","journal-title":"Appl. Sci."},{"key":"10.1016\/j.compag.2023.108371_b0085","doi-asserted-by":"crossref","DOI":"10.1016\/j.infrared.2021.103802","article-title":"Simultaneous determination of five micro-components in Chrysanthemum morifolium (Hangbaiju) using near-infrared hyperspectral imaging coupled with deep learning with wavelength selection","volume":"116","author":"He","year":"2021","journal-title":"Infrared Phys. Technol."},{"key":"10.1016\/j.compag.2023.108371_b0090","article-title":"Hyperspectral image classification via active learning and broad learning system","author":"Huang","year":"2022","journal-title":"Appl. Intell."},{"key":"10.1016\/j.compag.2023.108371_b0095","doi-asserted-by":"crossref","unstructured":"Inbaraj, X.A., Villavicencio, C., Macrohon, J.J., Jeng, J.-H., Hsieh, J.-G., 2021. Object Identification and Localization Using Grad-CAM++ with Mask Regional Convolution Neural Network 14. https:\/\/doi.org\/10.3390\/electronics10131541.","DOI":"10.3390\/electronics10131541"},{"key":"10.1016\/j.compag.2023.108371_b0100","doi-asserted-by":"crossref","unstructured":"Indira, D.N.V.S.L.S., Goddu, J., Indraja, B., Challa, V.M.L., Manasa, B., 2023. A review on fruit recognition and feature evaluation using CNN. SI5 NANO 2021 80, 3438\u20133443. https:\/\/doi.org\/10.1016\/j.matpr.2021.07.267.","DOI":"10.1016\/j.matpr.2021.07.267"},{"key":"10.1016\/j.compag.2023.108371_b0105","doi-asserted-by":"crossref","unstructured":"D. Ishikawa M. Ishigaki A.A. Gowen NIR Imaging Y. Ozaki C. Huck S. Tsuchikawa S.B. Engelsen Near-Infrared Spectroscopy: Theory, Spectral Analysis, Instrumentation, and Applications 2021 Springer Singapore, Singapore 517 551 10.1007\/978-981-15-8648-4_22.","DOI":"10.1007\/978-981-15-8648-4_22"},{"key":"10.1016\/j.compag.2023.108371_b0110","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1016\/j.neucom.2021.03.035","article-title":"A survey: Deep learning for hyperspectral image classification with few labeled samples","volume":"448","author":"Jia","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compag.2023.108371_b0115","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.inffus.2023.03.011","article-title":"Multiscale spatial\u2013spectral transformer network for hyperspectral and multispectral image fusion","volume":"96","author":"Jia","year":"2023","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.compag.2023.108371_b0120","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2022\/7275433","article-title":"Differential evolution and multiclass support vector machine for alzheimer\u2019s classification","volume":"2022","author":"Kaka","year":"2022","journal-title":"Secur. Commun. Netw."},{"key":"10.1016\/j.compag.2023.108371_b0125","doi-asserted-by":"crossref","unstructured":"Koonce, B., 2021. EfficientNet, in: Koonce, B. (Ed.), Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization. Apress, Berkeley, CA, pp. 109\u2013123. https:\/\/doi.org\/10.1007\/978-1-4842-6168-2_10.","DOI":"10.1007\/978-1-4842-6168-2_10"},{"key":"10.1016\/j.compag.2023.108371_b0130","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.chemolab.2018.12.005","article-title":"Dynamic spectrum matching with one-shot learning","volume":"184","author":"Liu","year":"2019","journal-title":"Chemom. Intell. Lab. Syst."},{"key":"10.1016\/j.compag.2023.108371_b0135","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.neunet.2019.01.012","article-title":"Continual lifelong learning with neural networks: A review","volume":"113","author":"Parisi","year":"2019","journal-title":"Neural Netw."},{"key":"10.1016\/j.compag.2023.108371_b0140","unstructured":"Tan, M., Le, Q.V., 2020. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."},{"key":"10.1016\/j.compag.2023.108371_b0145","doi-asserted-by":"crossref","DOI":"10.1016\/j.saa.2022.121759","article-title":"Near infrared spectroscopy quantification based on Bi-LSTM and transfer learning for new scenarios","volume":"283","author":"Tan","year":"2022","journal-title":"Spectrochim. Acta A Mol. Biomol. Spectrosc."},{"key":"10.1016\/j.compag.2023.108371_b0150","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106638","article-title":"Early detection of freezing damage in oranges by online Vis\/NIR transmission coupled with diameter correction method and deep 1D-CNN","volume":"193","author":"Tian","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108371_b0155","doi-asserted-by":"crossref","first-page":"4069","DOI":"10.1038\/s41467-020-17866-2","article-title":"Brain-inspired replay for continual learning with artificial neural networks","volume":"11","author":"Van De Ven","year":"2020","journal-title":"Nat. Commun."},{"key":"10.1016\/j.compag.2023.108371_b0160","doi-asserted-by":"crossref","first-page":"1185","DOI":"10.1038\/s42256-022-00568-3","article-title":"Three types of incremental learning","volume":"4","author":"Van De Ven","year":"2022","journal-title":"Nat. Mach. Intell."},{"key":"10.1016\/j.compag.2023.108371_b0165","doi-asserted-by":"crossref","first-page":"2831","DOI":"10.3390\/molecules23112831","article-title":"Discrimination of Chrysanthemum Varieties Using Hyperspectral Imaging Combined with a Deep Convolutional Neural Network","volume":"23","author":"Wu","year":"2018","journal-title":"Molecules"},{"key":"10.1016\/j.compag.2023.108371_b0170","doi-asserted-by":"crossref","first-page":"2556","DOI":"10.3390\/rs14112556","article-title":"Hyperspectral Image Classification Based on Class-Incremental Learning with Knowledge Distillation","volume":"14","author":"Xu","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2023.108371_b0175","doi-asserted-by":"crossref","DOI":"10.1016\/j.jep.2020.113043","article-title":"The flower head of Chrysanthemum morifolium Ramat. (Juhua): A paradigm of flowers serving as Chinese dietary herbal medicine","volume":"261","author":"Yuan","year":"2020","journal-title":"J. Ethnopharmacol."},{"key":"10.1016\/j.compag.2023.108371_b0180","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.ins.2021.10.058","article-title":"An incremental learning mechanism for object classification based on progressive fuzzy three-way concept","volume":"584","author":"Yuan","year":"2022","journal-title":"Inf. Sci."},{"key":"10.1016\/j.compag.2023.108371_b0185","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107153","article-title":"Vis-NIR hyperspectral imaging combined with incremental learning for open world maize seed varieties identification","volume":"199","author":"Zhang","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108371_b0190","doi-asserted-by":"crossref","DOI":"10.1016\/j.saa.2022.122288","article-title":"Detection of lead content in oilseed rape leaves and roots based on deep transfer learning and hyperspectral imaging technology","volume":"290","author":"Zhou","year":"2023","journal-title":"Spectrochim. Acta A Mol. Biomol. Spectrosc."},{"key":"10.1016\/j.compag.2023.108371_b0195","doi-asserted-by":"crossref","DOI":"10.1016\/j.foodcont.2022.109291","article-title":"Identification of slightly sprouted wheat kernels using hyperspectral imaging technology and different deep convolutional neural networks","volume":"143","author":"Zhu","year":"2023","journal-title":"Food Control"},{"key":"10.1016\/j.compag.2023.108371_b0200","article-title":"Identification of Oil Tea (Camellia oleifera C.Abel) Cultivars Using EfficientNet-B4 CNN Model with Attention Mechanism","volume":"13","author":"Zhu","year":"2022","journal-title":"Forests"}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923007597?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923007597?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,11]],"date-time":"2023-12-11T10:51:32Z","timestamp":1702291892000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169923007597"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":40,"alternative-id":["S0168169923007597"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.108371","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Identification of chrysanthemum using hyperspectral imaging based on few-shot class incremental learning","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.108371","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108371"}}