{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T16:22:17Z","timestamp":1742401337087,"version":"3.37.3"},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,10,19]],"date-time":"2023-10-19T00:00:00Z","timestamp":1697673600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100007173","name":"Bio-oriented Technology Research Advancement Institution","doi-asserted-by":"publisher","award":["JPJ011397"],"id":[{"id":"10.13039\/501100007173","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.compag.2023.108328","type":"journal-article","created":{"date-parts":[[2023,11,8]],"date-time":"2023-11-08T05:50:50Z","timestamp":1699422650000},"page":"108328","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["3D grape bunch model reconstruction from 2D images"],"prefix":"10.1016","volume":"215","author":[{"given":"Yan San","family":"Woo","sequence":"first","affiliation":[]},{"given":"Zhuguang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Shun","family":"Tamura","sequence":"additional","affiliation":[]},{"given":"Prawit","family":"Buayai","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7717-8312","authenticated-orcid":false,"given":"Hiromitsu","family":"Nishizaki","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4616-6834","authenticated-orcid":false,"given":"Koji","family":"Makino","sequence":"additional","affiliation":[]},{"given":"Latifah Munirah","family":"Kamarudin","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9531-3197","authenticated-orcid":false,"given":"Xiaoyang","family":"Mao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.compag.2023.108328_b0010","doi-asserted-by":"crossref","first-page":"12999","DOI":"10.3390\/s150612999","article-title":"Matching the best viewing angle in depth cameras for biomass estimation based on poplar seedling geometry","volume":"15","author":"And\u00fajar","year":"2015","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2023.108328_b0015","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.biosystemseng.2016.12.011","article-title":"A new methodology for estimating the grapevine-berry number per cluster using image analysis","volume":"156","author":"Aquino","year":"2017","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2023.108328_b0020","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"6302","article-title":"Poco: Point convolution for surface reconstruction","author":"Boulch","year":"2022"},{"key":"10.1016\/j.compag.2023.108328_b0025","doi-asserted-by":"crossref","first-page":"4829","DOI":"10.1109\/ACCESS.2020.3048374","article-title":"End-to-end automatic berry counting for table grape thinning","volume":"9","author":"Buayai","year":"2020","journal-title":"IEEE Access"},{"issue":"6","key":"10.1016\/j.compag.2023.108328_b0030","doi-asserted-by":"crossref","first-page":"2009","DOI":"10.1109\/TCBB.2018.2824814","article-title":"Machine vision system for 3D plant phenotyping","volume":"16","author":"Chaudhury","year":"2018","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinf."},{"key":"10.1016\/j.compag.2023.108328_b0035","series-title":"2015 12th Conference on Computer and Robot Vision","first-page":"290","article-title":"Computer vision based autonomous robotic system for 3D plant growth measurement","author":"Chaudhury","year":"2015"},{"key":"10.1016\/j.compag.2023.108328_b0040","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"4974","article-title":"Hybrid task cascade for instance segmentation","author":"Chen","year":"2019"},{"key":"10.1016\/j.compag.2023.108328_b0005","unstructured":"CloudCompare (version 2.16). http:\/\/www.cloudcompare.org\/ (accessed 2023)."},{"key":"10.1016\/j.compag.2023.108328_b0045","unstructured":"Dosovitskiy, A., et al., 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929."},{"key":"10.1016\/j.compag.2023.108328_b0050","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.cag.2015.09.003","article-title":"MVE\u2014An image-based reconstruction environment","volume":"53","author":"Fuhrmann","year":"2015","journal-title":"Comput. Graph."},{"key":"10.1016\/j.compag.2023.108328_b0055","doi-asserted-by":"crossref","unstructured":"Gao, T., et al., 2019. \u201cPlant Event Detection from Time-Varying Point Clouds. In :2019 IEEE International Conference on Big Data (Big Data), 2019: IEEE, pp. 3321-3329.","DOI":"10.1109\/BigData47090.2019.9006497"},{"issue":"1","key":"10.1016\/j.compag.2023.108328_b0060","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1071\/FP16167","article-title":"Approaches to three-dimensional reconstruction of plant shoot topology and geometry","volume":"44","author":"Gibbs","year":"2016","journal-title":"Funct. Plant Biol."},{"key":"10.1016\/j.compag.2023.108328_b0065","doi-asserted-by":"crossref","first-page":"589","DOI":"10.1016\/j.scienta.2018.11.037","article-title":"Berry thinning to reduce bunch compactness improves fruit quality of Cabernet Sauvignon (Vitis vinifera L.)","volume":"246","author":"Han","year":"2019","journal-title":"Sci. Hortic."},{"issue":"2","key":"10.1016\/j.compag.2023.108328_b0070","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1109\/TPAMI.2018.2844175","article-title":"Mask R-CNN","volume":"42","author":"He","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compag.2023.108328_b0075","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/j.foodcont.2014.09.004","article-title":"Assessment of grape cluster yield components based on 3D descriptors using stereo vision","volume":"50","author":"Ivorra","year":"2015","journal-title":"Food Control"},{"key":"10.1016\/j.compag.2023.108328_b0080","unstructured":"Kingma, D.P., Ba, J., 2014. Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980."},{"issue":"1\u20132","key":"10.1016\/j.compag.2023.108328_b0085","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1002\/nav.3800020109","article-title":"The Hungarian method for the assignment problem","volume":"2","author":"Kuhn","year":"1955","journal-title":"Naval research logistics quarterly"},{"key":"10.1016\/j.compag.2023.108328_b0090","unstructured":"Liu, S., Whitty, M., Cossell, S., 2015. \u201cA lightweight method for grape berry counting based on automated 3D bunch reconstruction from a single image,\u201d In: ICRA, International conference on robotics and automation (IEEE), workshop on robotics in agriculture, 2015, vol. 4."},{"issue":"6","key":"10.1016\/j.compag.2023.108328_b0095","first-page":"1","article-title":"TreePartNet: neural decomposition of point clouds for 3D tree reconstruction","volume":"40","author":"Liu","year":"2021","journal-title":"ACM Trans. Graph."},{"key":"10.1016\/j.compag.2023.108328_b0100","doi-asserted-by":"crossref","first-page":"114663","DOI":"10.1109\/ACCESS.2020.3003415","article-title":"3DBunch: A novel iOS-smartphone application to evaluate the number of grape berries per bunch using image analysis techniques","volume":"8","author":"Liu","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.compag.2023.108328_b0105","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105360","article-title":"A vision-based robust grape berry counting algorithm for fast calibration-free bunch weight estimation in the field","volume":"173","author":"Liu","year":"2020","journal-title":"Comput. Electron. Agric."},{"issue":"2","key":"10.1016\/j.compag.2023.108328_bib226","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1109\/TIT.1982.1056489","article-title":"Least squares quantization in PCM","volume":"28","author":"Lloyd","year":"1982","journal-title":"IEEE transactions on information theory"},{"key":"10.1016\/j.compag.2023.108328_b0110","doi-asserted-by":"crossref","unstructured":"Luo, L., Zeng, A., Pan, D., 2022. \u201cA Multi-head Two-level Attention-based Network for Plant-part Segmentation on 3D Point Cloud,\u201d In: 2022 10th International Conference on Information Systems and Computing Technology (ISCTech), 28-30 Dec. 2022 2022, pp. 561-567, doi: 10.1109\/ISCTech58360.2022.00093.","DOI":"10.1109\/ISCTech58360.2022.00093"},{"key":"10.1016\/j.compag.2023.108328_b0115","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1016\/j.compag.2017.02.017","article-title":"High-precision 3D detection and reconstruction of grapes from laser range data for efficient phenotyping based on supervised learning","volume":"135","author":"Mack","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108328_b0120","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.compag.2018.10.011","article-title":"Semantic labeling and reconstruction of grape bunches from 3D range data using a new RGB-D feature descriptor","volume":"155","author":"Mack","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108328_b0125","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops","article-title":"Rols: Robust object-level slam for grape counting","author":"Nellithimaru","year":"2019"},{"key":"10.1016\/j.compag.2023.108328_b0130","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1016\/j.isprsjprs.2020.11.010","article-title":"Three-dimensional photogrammetry with deep learning instance segmentation to extract berry fruit harvestability traits","volume":"171","author":"Ni","year":"2021","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2023.108328_b0135","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1017\/S096249291700006X","article-title":"A survey of structure from motion*","volume":"26","author":"\u00d6zye\u015fil","year":"2017","journal-title":"Acta Numerica"},{"key":"10.1016\/j.compag.2023.108328_b0140","unstructured":"Przemyslaw, P., 1996. \u201cL-systems: from the theory to visual models of plants,\u201d in Proceedings of the 2nd CSIRO Symposium on Computational Challenges in Life Sciences, 1996: CSIRO Publishing."},{"issue":"24","key":"10.1016\/j.compag.2023.108328_b0145","doi-asserted-by":"crossref","first-page":"2953","DOI":"10.3390\/rs11242953","article-title":"Combination of an automated 3D field phenotyping workflow and predictive modelling for high-throughput and non-invasive phenotyping of grape bunches","volume":"11","author":"Rist","year":"2019","journal-title":"Remote Sens. (Basel)"},{"key":"10.1016\/j.compag.2023.108328_b0150","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.compag.2013.11.008","article-title":"Automated image analysis framework for high-throughput determination of grapevine berry sizes using conditional random fields","volume":"100","author":"Roscher","year":"2014","journal-title":"Comput. Electron. Agric."},{"issue":"1","key":"10.1016\/j.compag.2023.108328_b0155","doi-asserted-by":"crossref","DOI":"10.1186\/s13007-019-0545-2","article-title":"PI-Plat: a high-resolution image-based 3D reconstruction method to estimate growth dynamics of rice inflorescence traits","volume":"15","author":"Sandhu","year":"2019","journal-title":"Plant Methods"},{"key":"10.1016\/j.compag.2023.108328_b0160","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105247","article-title":"Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association","volume":"170","author":"Santos","year":"2020","journal-title":"Comput. Electron. Agric."},{"issue":"2","key":"10.1016\/j.compag.2023.108328_b0165","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1111\/j.1467-8659.2007.01016.x","article-title":"Efficient RANSAC for Point-Cloud Shape Detection","volume":"26","author":"Schnabel","year":"2007","journal-title":"Comput. Graphics Forum"},{"key":"10.1016\/j.compag.2023.108328_b0170","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.compag.2015.04.001","article-title":"Automated 3D reconstruction of grape cluster architecture from sensor data for efficient phenotyping","volume":"114","author":"Sch\u00f6ler","year":"2015","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108328_b0175","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"4104","article-title":"Structure-from-motion revisited","author":"Schonberger","year":"2016"},{"key":"10.1016\/j.compag.2023.108328_b0180","unstructured":"SideFX. \u201cL-System Geometry Node.\u201d https:\/\/www.sidefx.com\/docs\/houdini\/nodes\/sop\/lsystem.html (accessed."},{"issue":"9","key":"10.1016\/j.compag.2023.108328_b0185","doi-asserted-by":"crossref","first-page":"1364","DOI":"10.3390\/agriculture12091364","article-title":"A Novel Lightweight Grape Detection Method","volume":"12","author":"Su","year":"2022","journal-title":"Agriculture"},{"key":"10.1016\/j.compag.2023.108328_b0190","doi-asserted-by":"crossref","unstructured":"Sun, J., Xie, Y., Chen, L., Zhou, X., Bao, H., 2021. \u201cNeuralRecon: Real-time coherent 3D reconstruction from monocular video,\u201d In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 15598-15607.","DOI":"10.1109\/CVPR46437.2021.01534"},{"issue":"1","key":"10.1016\/j.compag.2023.108328_b0195","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1111\/ajgw.12310","article-title":"What do we know about grapevine bunch compactness? A state-of-the-art review","volume":"24","author":"Tello","year":"2018","journal-title":"Aust. J. Grape Wine Res."},{"issue":"4","key":"10.1016\/j.compag.2023.108328_b0200","doi-asserted-by":"crossref","first-page":"1187","DOI":"10.3390\/s18041187","article-title":"A novel LiDAR-based instrument for high-throughput, 3D measurement of morphological traits in maize and sorghum","volume":"18","author":"Thapa","year":"2018","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2023.108328_b0205","series-title":"Proceedings of the IEEE\/CVF International Conference on Computer Vision","first-page":"5722","article-title":"Multi-view 3d reconstruction with transformers","author":"Wang","year":"2021"},{"key":"10.1016\/j.compag.2023.108328_b0210","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106840","article-title":"A 3D grape bunch reconstruction pipeline based on constraint-based optimisation and restricted reconstruction grammar","volume":"196","author":"Xin","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108328_b0215","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.isprsjprs.2020.04.002","article-title":"Counting of grapevine berries in images via semantic segmentation using convolutional neural networks","volume":"164","author":"Zabawa","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2023.108328_b0220","unstructured":"Zhou, Q.-Y., Park, J., Koltun, V., 2018. \u201cOpen3D: A modern library for 3D data processing,\u201d arXiv preprint arXiv:1801.09847, 2018."},{"key":"10.1016\/j.compag.2023.108328_b0225","doi-asserted-by":"crossref","unstructured":"Zhu, F., Thapa, S., Gao, T., Ge, Y., Walia, H., Yu, H., 2018. \u201c3D reconstruction of plant leaves for high-throughput phenotyping,\u201d In: 2018 IEEE International Conference on Big Data (Big Data), 2018: IEEE, pp. 4285-4293.","DOI":"10.1109\/BigData.2018.8622428"}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923007160?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923007160?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,11]],"date-time":"2023-12-11T10:50:29Z","timestamp":1702291829000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169923007160"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":46,"alternative-id":["S0168169923007160"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.108328","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"3D grape bunch model reconstruction from 2D images","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.108328","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"108328"}}