{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T05:45:22Z","timestamp":1740116722865,"version":"3.37.3"},"reference-count":82,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100014440","name":"Ministerio de Ciencia, Innovaci\u00f3n y Universidades","doi-asserted-by":"publisher","award":["AGL2017-87658-R"],"id":[{"id":"10.13039\/100014440","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1016\/j.compag.2023.108327","type":"journal-article","created":{"date-parts":[[2023,10,24]],"date-time":"2023-10-24T04:04:13Z","timestamp":1698120253000},"page":"108327","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Reference evapotranspiration projections in Southern Spain (until 2100) using temperature-based machine learning models"],"prefix":"10.1016","volume":"214","author":[{"given":"J.A.","family":"Bellido-Jim\u00e9nez","sequence":"first","affiliation":[]},{"given":"J.","family":"Est\u00e9vez","sequence":"additional","affiliation":[]},{"given":"A.P.","family":"Garc\u00eda-Mar\u00edn","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2023.108327_b0005","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1016\/j.jhydrol.2015.04.073","article-title":"Extreme Learning Machines: A new approach for prediction of reference evapotranspiration","volume":"527","author":"Abdullah","year":"2015","journal-title":"J Hydrol (amst)"},{"doi-asserted-by":"crossref","unstructured":"H. Alibrahim S.A. Ludwig Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian Optimization. 2021 IEEE Congress on Evolutionary Computation, CEC 2021 - Proceedings 2021 1551 1559 10.1109\/CEC45853.2021.9504761.","key":"10.1016\/j.compag.2023.108327_b0010","DOI":"10.1109\/CEC45853.2021.9504761"},{"unstructured":"R. Allen L. Pereira D. Raes M.S. Fao Rome, undefined, 1998, undefined, 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. scscourt.org.","key":"10.1016\/j.compag.2023.108327_b0015"},{"key":"10.1016\/j.compag.2023.108327_b0020","article-title":"Gu\u00eda de escenarios regionalizados de cambio clim\u00e1tico sobre Espa\u00f1a a partir de los resultados del IPCC-AR5 - State meteorological agency - AEMET - Spanish government","author":"Amblar","year":"2017","journal-title":"Madrid."},{"unstructured":"P. Amblar F. Mar\u00eda J. Casado C. Asunci\u00f3n P. Saavedra P. Ramos C. Ernesto R. Camino 2017b. Arcimis: Gu\u00eda de escenarios regionalizados de cambio clim\u00e1tico sobre Espa\u00f1a a partir de los resultados del IPCC-AR5. Gu\u00eda de escenarios regionalizados de cambio clim\u00e1tico sobre Espa\u00f1a a partir de los resultados del IPCC-AR5. 10.31978\/014-17-010-8.","key":"10.1016\/j.compag.2023.108327_b0025"},{"key":"10.1016\/j.compag.2023.108327_b0030","doi-asserted-by":"crossref","first-page":"191","DOI":"10.5194\/asr-17-191-2020","article-title":"High resolution climate change projections for the Pyrenees region","volume":"17","author":"Amblar","year":"2020","journal-title":"Adv. Sci. Res."},{"key":"10.1016\/j.compag.2023.108327_b0035","doi-asserted-by":"crossref","first-page":"117211","DOI":"10.1016\/j.apenergy.2021.117211","article-title":"Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions","volume":"298","author":"Bellido-Jim\u00e9nez","year":"2021","journal-title":"Appl. Energy"},{"key":"10.1016\/j.compag.2023.108327_b0040","doi-asserted-by":"crossref","first-page":"106558","DOI":"10.1016\/j.agwat.2020.106558","article-title":"New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain","volume":"245","author":"Bellido-Jim\u00e9nez","year":"2021","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0045","doi-asserted-by":"crossref","DOI":"10.1016\/j.agwat.2022.107955","article-title":"A regional machine learning method to outperform temperature-based reference evapotranspiration estimations in Southern Spain","volume":"274","author":"Bellido-Jim\u00e9nez","year":"2022","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0050","doi-asserted-by":"crossref","first-page":"107955","DOI":"10.1016\/j.agwat.2022.107955","article-title":"A regional machine learning method to outperform temperature-based reference evapotranspiration estimations in Southern Spain","volume":"274","author":"Bellido-Jim\u00e9nez","year":"2022","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0055","doi-asserted-by":"crossref","first-page":"656","DOI":"10.3390\/agronomy12030656","article-title":"AgroML: An open-source repository to forecast reference evapotranspiration in different geo-climatic conditions using machine learning and transformer-based models","volume":"12","author":"Bellido-Jim\u00e9nez","year":"2022","journal-title":"Agronomy"},{"key":"10.1016\/j.compag.2023.108327_b0060","doi-asserted-by":"crossref","DOI":"10.3390\/agronomy12030656","article-title":"AgroML: An open-source repository to forecast reference evapotranspiration in different geo-climatic conditions using machine learning and transformer-based models","volume":"12","author":"Bellido-Jim\u00e9nez","year":"2022","journal-title":"Agronomy"},{"key":"10.1016\/j.compag.2023.108327_b0065","first-page":"281","article-title":"Random search for hyper-parameter optimization","volume":"13","author":"Bergstra","year":"2012","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.compag.2023.108327_b0070","doi-asserted-by":"crossref","first-page":"41","DOI":"10.22499\/2.6301.004","article-title":"The ACCESS coupled model: Description, control climate and evaluation","volume":"63","author":"Bi","year":"2013","journal-title":"Aust. Meteorol. Oceanogr. J."},{"unstructured":"Borji, A., Itti, L., 2013. Bayesian optimization explains human active search. Adv Neural Inf Process Syst 26.","key":"10.1016\/j.compag.2023.108327_b0075"},{"key":"10.1016\/j.compag.2023.108327_b0080","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.compag.2023.108327_b0085","article-title":"IPCC, 2022: Climate change 2022: Impacts, adaptation, and vulnerability. contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change","author":"Caretta","year":"2022","journal-title":"Cambridge"},{"key":"10.1016\/j.compag.2023.108327_b0090","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.gloenvcha.2016.04.012","article-title":"Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability","volume":"39","author":"Carr\u00e3o","year":"2016","journal-title":"Glob. Environ. Chang."},{"key":"10.1016\/j.compag.2023.108327_b0095","doi-asserted-by":"crossref","first-page":"162979","DOI":"10.1016\/j.scitotenv.2023.162979","article-title":"Assessment of solar energy potential in China using an ensemble of photovoltaic power models","volume":"877","author":"Chen","year":"2023","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.compag.2023.108327_b0100","doi-asserted-by":"crossref","first-page":"125286","DOI":"10.1016\/j.jhydrol.2020.125286","article-title":"Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods","volume":"591","author":"Chen","year":"2020","journal-title":"J Hydrol (amst)"},{"key":"10.1016\/j.compag.2023.108327_b0105","doi-asserted-by":"crossref","first-page":"480","DOI":"10.2166\/nh.2016.217","article-title":"Modifying Hargreaves-Samani equation with meteorological variables for estimation of reference evapotranspiration in Turkey","volume":"48","author":"Cobaner","year":"2017","journal-title":"Hydrol. Res."},{"key":"10.1016\/j.compag.2023.108327_b0110","doi-asserted-by":"crossref","first-page":"330","DOI":"10.4081\/jlimnol.2018.1707","article-title":"The impact of global warming on lake surface water temperature in Poland - The application of empirical-statistical downscaling, 1971\u20132100","volume":"77","author":"Czernecki","year":"2018","journal-title":"J. Limnol."},{"key":"10.1016\/j.compag.2023.108327_b0115","doi-asserted-by":"crossref","first-page":"442","DOI":"10.1002\/hyp.7153","article-title":"Artificial neural network models for estimating regional reference evapotranspiration based on climate factors","volume":"23","author":"Dai","year":"2009","journal-title":"Hydrol. Process."},{"key":"10.1016\/j.compag.2023.108327_b0120","doi-asserted-by":"crossref","first-page":"11091","DOI":"10.3390\/su151411091","article-title":"A combined clustering and trends analysis approach for characterizing reference evapotranspiration in Veneto","volume":"15","author":"Di Nunno","year":"2023","journal-title":"Sustainability"},{"key":"10.1016\/j.compag.2023.108327_b0125","doi-asserted-by":"crossref","first-page":"108232","DOI":"10.1016\/j.agwat.2023.108232","article-title":"Future trends of reference evapotranspiration in Sicily based on CORDEX data and machine learning algorithms","volume":"280","author":"Di Nunno","year":"2023","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0130","doi-asserted-by":"crossref","first-page":"1045","DOI":"10.1016\/j.agwat.2011.01.015","article-title":"An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain","volume":"98","author":"Espadafor","year":"2011","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0135","doi-asserted-by":"crossref","first-page":"3342","DOI":"10.1002\/hyp.7439","article-title":"Sensitivity analysis of a Penman-Monteith type equation to estimate reference evapotranspiration in southern Spain","volume":"23","author":"Est\u00e9vez","year":"2009","journal-title":"Hydrol. Process."},{"key":"10.1016\/j.compag.2023.108327_b0140","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.jhydrol.2011.02.031","article-title":"Guidelines on validation procedures for meteorological data from automatic weather stations","volume":"402","author":"Est\u00e9vez","year":"2011","journal-title":"J Hydrol (amst)"},{"key":"10.1016\/j.compag.2023.108327_b0145","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.agwat.2016.04.019","article-title":"Quality assurance procedures for validating meteorological input variables of reference evapotranspiration in mendoza province (Argentina)","volume":"172","author":"Est\u00e9vez","year":"2016","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0150","article-title":"Monthly precipitation forecasts using wavelet neural networks models in a semiarid environment","volume":"12","author":"Est\u00e9vez","year":"2020","journal-title":"Water (switzerland)"},{"key":"10.1016\/j.compag.2023.108327_b0155","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.compag.2017.01.027","article-title":"Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data","volume":"136","author":"Feng","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108327_b0160","doi-asserted-by":"crossref","first-page":"106113","DOI":"10.1016\/j.agwat.2020.106113","article-title":"New approach to estimate daily reference evapotranspiration based on hourly temperature and relative humidity using machine learning and deep learning","volume":"234","author":"Ferreira","year":"2020","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0165","doi-asserted-by":"crossref","first-page":"556","DOI":"10.1016\/j.jhydrol.2019.03.028","article-title":"Estimation of reference evapotranspiration in Brazil with limited meteorological data using ANN and SVM \u2013 A new approach","volume":"572","author":"Ferreira","year":"2019","journal-title":"J Hydrol (amst)"},{"key":"10.1016\/j.compag.2023.108327_b0170","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1002\/hyp.9272","article-title":"Selecting the best IDF model by using the multifractal approach","volume":"27","author":"Garc\u00eda-Mar\u00edn","year":"2013","journal-title":"Hydrolog. Process."},{"key":"10.1016\/j.compag.2023.108327_b0175","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/j.agwat.2005.05.001","article-title":"Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment","volume":"81","author":"Gavil\u00e1n","year":"2006","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0180","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1061\/(ASCE)0733-9437(2008)134:1(1)","article-title":"Comparison of standardized reference evapotranspiration equations in Southern Spain","volume":"134","author":"Gavil\u00e1n","year":"2008","journal-title":"J. Irrig. Drain. Eng."},{"key":"10.1016\/j.compag.2023.108327_b0185","doi-asserted-by":"crossref","first-page":"107836","DOI":"10.1016\/j.compag.2023.107836","article-title":"A review of the Artificial Intelligence (AI) based techniques for estimating reference evapotranspiration: Current trends and future perspectives","volume":"209","author":"Goyal","year":"2023","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108327_b0190","doi-asserted-by":"crossref","DOI":"10.1029\/2020EF001502","article-title":"Projected impacts of climate change on drought patterns over east Africa","volume":"8","author":"Haile","year":"2020","journal-title":"Earths Future"},{"key":"10.1016\/j.compag.2023.108327_b0195","doi-asserted-by":"crossref","first-page":"350","DOI":"10.1016\/j.jhydrol.2007.11.009","article-title":"Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis","volume":"349","author":"Hamed","year":"2008","journal-title":"J Hydrol (amst)"},{"key":"10.1016\/j.compag.2023.108327_b0200","doi-asserted-by":"crossref","first-page":"96","DOI":"10.13031\/2013.26773","article-title":"Reference crop evapotranspiration from temperature","volume":"1","author":"Hargreaves","year":"1985","journal-title":"Appl Eng Agric"},{"key":"10.1016\/j.compag.2023.108327_b0205","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1007\/s11600-018-0118-1","article-title":"Detection of trends and break points in temperature: The case of Umbria (Italy) and Guadalquivir Valley (Spain)","volume":"66","author":"Herrera-Grimaldi","year":"2018","journal-title":"Acta Geophysica"},{"key":"10.1016\/j.compag.2023.108327_b0210","first-page":"063105","article-title":"Multifractal analysis of diurnal temperature range over southern spain using validated datasets. Chaos: An interdisciplinary","volume":"29","author":"Herrera-Grimaldi","year":"2019","journal-title":"J. Nonlinear Sci."},{"key":"10.1016\/j.compag.2023.108327_b0215","doi-asserted-by":"crossref","first-page":"063105","DOI":"10.1063\/1.5089810","article-title":"Multifractal analysis of diurnal temperature range over Southern Spain using validated datasets","volume":"29","author":"Herrera-Grimaldi","year":"2019","journal-title":"Chaos"},{"doi-asserted-by":"crossref","unstructured":"C. Herv\u00e1s-G\u00e1mez F. Delgado-Ramos Drought Management Planning Policy: From Europe to Spain. Sustainability 11 2019 1862 10.3390\/SU11071862.","key":"10.1016\/j.compag.2023.108327_b0220","DOI":"10.3390\/su11071862"},{"key":"10.1016\/j.compag.2023.108327_b0225","doi-asserted-by":"crossref","first-page":"727","DOI":"10.1029\/WR020i006p00727","article-title":"A nonparametric trend test for seasonal data with serial dependence","volume":"20","author":"Hirsch","year":"1984","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.compag.2023.108327_b0230","first-page":"985","article-title":"Extreme learning machine: A new learning scheme of feedforward neural networks","volume":"2","author":"Huang","year":"2004","journal-title":"IEEE International Conference on Neural Networks - Conference Proceedings"},{"key":"10.1016\/j.compag.2023.108327_b0235","article-title":"Automated machine learning, the springer series on challenges in machine learning","author":"Hutter","year":"2019","journal-title":"Springer International Publishing"},{"key":"10.1016\/j.compag.2023.108327_b0240","first-page":"3544","article-title":"Climate Change 2013: The physical science basis. An overview of the working group 1 contribution to the fifth assessment report of the intergovernmental panel on climate change (IPCC)","volume":"16","author":"Ipcc","year":"2014","journal-title":"EGUGA"},{"key":"10.1016\/j.compag.2023.108327_b0245","doi-asserted-by":"crossref","first-page":"5674","DOI":"10.3390\/rs14225674","article-title":"Prediction of future spatial and temporal evolution trends of reference evapotranspiration in the yellow river basin","volume":"14","author":"Jian","year":"2022","journal-title":"China. Remote Sens (basel)"},{"unstructured":"Liashchynskyi, Petro, Liashchynskyi, Pavlo, 2019. Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS. 10.48550\/arxiv.1912.06059.","key":"10.1016\/j.compag.2023.108327_b0250"},{"key":"10.1016\/j.compag.2023.108327_b0255","doi-asserted-by":"crossref","first-page":"160269","DOI":"10.1016\/j.scitotenv.2022.160269","article-title":"Prediction of diffuse solar radiation by integrating radiative transfer model and machine-learning techniques","volume":"859","author":"Lu","year":"2023","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.compag.2023.108327_b0260","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.agwat.2014.01.006","article-title":"Short-term forecasting of daily reference evapotranspiration using the hargreaves-samani model and temperature forecasts","volume":"136","author":"Luo","year":"2014","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0265","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.5424\/sjar\/2013114-3869","article-title":"Regionalization of the Hargreaves coefficient to estimate long-term reference evapotranspiration series in SE Spain","volume":"11","author":"Maestre-Valero","year":"2013","journal-title":"Span. J. Agric. Res."},{"key":"10.1016\/j.compag.2023.108327_b0270","first-page":"81","article-title":"Modeling reference evapotranspiration with calculated targets","volume":"149","author":"Mart\u00ed","year":"2015","journal-title":"Assessment and Implications. Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0275","doi-asserted-by":"crossref","first-page":"859","DOI":"10.5194\/nhess-20-859-2020","article-title":"Estimation of evapotranspiration by the Food and agricultural organization of the united nations (FAO) Penman-Monteith temperature (PMT) and Hargreaves-Samani (HS) models under temporal and spatial criteria - A case study in Duero basin (Spain)","volume":"20","author":"Moratiel","year":"2020","journal-title":"Nat. Hazards Earth Syst. Sci."},{"key":"10.1016\/j.compag.2023.108327_b0280","doi-asserted-by":"crossref","first-page":"100225","DOI":"10.1016\/j.wace.2019.100225","article-title":"Past (1950\u20132017) and future (\u22122100) temperature and precipitation trends in Egypt","volume":"26","author":"Mostafa","year":"2019","journal-title":"WeatherClim Extrem"},{"key":"10.1016\/j.compag.2023.108327_b0285","doi-asserted-by":"crossref","first-page":"106900","DOI":"10.1016\/j.dib.2021.106900","article-title":"A high-resolution downscaled CMIP5 projections dataset of essential surface climate variables over the globe coherent with the ERA5 reanalysis for climate change impact assessments","volume":"35","author":"No\u00ebl","year":"2021","journal-title":"Data Brief"},{"key":"10.1016\/j.compag.2023.108327_b0290","doi-asserted-by":"crossref","first-page":"107319","DOI":"10.1016\/j.agwat.2021.107319","article-title":"Reference crop evapotranspiration for data-sparse regions using reanalysis products","volume":"262","author":"Nouri","year":"2022","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0295","doi-asserted-by":"crossref","first-page":"684","DOI":"10.1109\/TLA.2019.8891934","article-title":"Solar radiation prediction using machine learning techniques: A review","volume":"17","author":"Obando","year":"2019","journal-title":"IEEE Lat. Am. Trans."},{"key":"10.1016\/j.compag.2023.108327_b0300","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/j.renene.2020.04.042","article-title":"Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons","volume":"156","author":"Pang","year":"2020","journal-title":"Renew. Energy"},{"key":"10.1016\/j.compag.2023.108327_b0305","doi-asserted-by":"crossref","first-page":"106543","DOI":"10.1016\/j.agwat.2020.106543","article-title":"Daily grass reference evapotranspiration with meteosat second generation shortwave radiation and reference ET products","volume":"248","author":"Paredes","year":"2021","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0310","doi-asserted-by":"crossref","first-page":"107169","DOI":"10.1016\/j.agwat.2021.107169","article-title":"Regional assessment of daily reference evapotranspiration: Can ground observations be replaced by blending ERA5-Land meteorological reanalysis and CM-SAF satellite-based radiation data?","volume":"258","author":"Pelosi","year":"2021","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0315","doi-asserted-by":"crossref","first-page":"05018029","DOI":"10.1061\/(ASCE)HE.1943-5584.0001747","article-title":"Evaluation of temperature-based methods for the estimation of reference evapotranspiration in the yucat\u00e1n peninsula","volume":"24","author":"Quej","year":"2018","journal-title":"Mexico. J Hydrol Eng"},{"key":"10.1016\/j.compag.2023.108327_b0320","doi-asserted-by":"crossref","first-page":"592","DOI":"10.1061\/(ASCE)IR.1943-4774.0000453","article-title":"Modified hargreaves-samani equation for the assessment of reference evapotranspiration in alpine river basins","volume":"138","author":"Ravazzani","year":"2012","journal-title":"J. Irrig. Drain. Eng."},{"key":"10.1016\/j.compag.2023.108327_b0325","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1007\/s00704-018-2390-z","article-title":"Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: application of different modeling scenarios","volume":"135","author":"Sanikhani","year":"2019","journal-title":"Theor. Appl. Climatol."},{"key":"10.1016\/j.compag.2023.108327_b0330","doi-asserted-by":"crossref","first-page":"1379","DOI":"10.1080\/01621459.1968.10480934","article-title":"Estimates of the regression coefficient based on Kendall\u2019s Tau","volume":"63","author":"Sen","year":"1968","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.compag.2023.108327_b0335","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1109\/JPROC.2015.2494218","article-title":"Taking the human out of the loop: A review of bayesian optimization","volume":"104","author":"Shahriari","year":"2016","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.compag.2023.108327_b0340","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.agwat.2017.04.009","article-title":"Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran","volume":"188","author":"Shiri","year":"2017","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0345","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1016\/j.jhydrol.2018.12.068","article-title":"Modeling reference evapotranspiration in island environments: Assessing the practical implications","volume":"570","author":"Shiri","year":"2019","journal-title":"J Hydrol (amst)"},{"key":"10.1016\/j.compag.2023.108327_b0350","doi-asserted-by":"crossref","first-page":"302","DOI":"10.1016\/j.jhydrol.2011.11.004","article-title":"Daily reference evapotranspiration modeling by using genetic programming approach in the basque country (Northern Spain)","volume":"414\u2013415","author":"Shiri","year":"2012","journal-title":"J Hydrol (amst)"},{"key":"10.1016\/j.compag.2023.108327_b0355","doi-asserted-by":"crossref","first-page":"106040","DOI":"10.1016\/j.agwat.2020.106040","article-title":"Comparative assessment of modelled and empirical reference evapotranspiration methods for a brazilian savanna","volume":"232","author":"Valle J\u00fanior","year":"2020","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0360","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1061\/(ASCE)0733-9437(2004)130:3(184)","article-title":"Assessing reference evapotranspiration by the hargreaves method in Southern Spain","volume":"130","author":"Vanderlinden","year":"2004","journal-title":"J. Irrig. Drain. Eng.-ASCE"},{"key":"10.1016\/j.compag.2023.108327_b0370","doi-asserted-by":"crossref","first-page":"2267","DOI":"10.2298\/TSCI180411168V","article-title":"Global warming impact on climate change in Serbia for the period 1961\u20132100","volume":"22","author":"Vukovic","year":"2018","journal-title":"Therm. Sci."},{"key":"10.1016\/j.compag.2023.108327_b0375","doi-asserted-by":"crossref","first-page":"147293","DOI":"10.1016\/j.scitotenv.2021.147293","article-title":"Modeling urban evapotranspiration using remote sensing, flux footprints, and artificial intelligence","volume":"786","author":"Vulova","year":"2021","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.compag.2023.108327_b0380","doi-asserted-by":"crossref","first-page":"1096","DOI":"10.1016\/j.agwat.2018.12.006","article-title":"Spatial and temporal characteristics of reference evapotranspiration and its climatic driving factors over China from 1979\u20132015","volume":"213","author":"Wang","year":"2019","journal-title":"Agric Water Manag"},{"key":"10.1016\/j.compag.2023.108327_b0385","doi-asserted-by":"crossref","first-page":"e14239","DOI":"10.1002\/hyp.14239","article-title":"Spatial-temporal evaluation of different reference evapotranspiration methods based on the climate forecast system reanalysis data","volume":"35","author":"Woldesenbet","year":"2021","journal-title":"Hydrol. Process."},{"key":"10.1016\/j.compag.2023.108327_b0390","doi-asserted-by":"crossref","first-page":"950","DOI":"10.1007\/BF03403515","article-title":"Forecasting monsoon precipitation using artificial neural networks","volume":"18","author":"Wu","year":"2001","journal-title":"Adv. Atmos. Sci."},{"doi-asserted-by":"crossref","unstructured":"Wu, L.-F.;, Qian, L\u00a0;, Huang, G.-M.;, Liu, X.-G.;, Wang, Y.-C.;, Bai, H\u00a0;, Wu, L.-F., Qian, Long, Huang, G.-M., Liu, X.-G., Wang, Y.-C., Bai, Hua, Wu, S.-F., 2022. Assessment of daily of reference evapotranspiration using CLDAS product in different climate regions of China Water 14 2022 1744 10.3390\/W14111744.","key":"10.1016\/j.compag.2023.108327_b0395","DOI":"10.3390\/w14111744"},{"key":"10.1016\/j.compag.2023.108327_b0400","first-page":"1529","article-title":"Based on grid-search and PSO parameter optimization for support vector machine","author":"Xiao","year":"2015","journal-title":"Proceedings of the World Congress on Intelligent Control and Automation (WCICA)"},{"key":"10.1016\/j.compag.2023.108327_b0405","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1175\/JHM-D-13-041.1","article-title":"Using the back propagation neural network approach to bias correct TMPA data in the arid region of Northwest China","volume":"15","author":"Yang","year":"2014","journal-title":"J. Hydrometeorol."},{"key":"10.1016\/j.compag.2023.108327_b0410","doi-asserted-by":"crossref","first-page":"113960","DOI":"10.1016\/j.enconman.2021.113960","article-title":"A review on global solar radiation prediction with machine learning models in a comprehensive perspective","volume":"235","author":"Zhou","year":"2021","journal-title":"Energy Convers Manag"},{"key":"10.1016\/j.compag.2023.108327_b0415","doi-asserted-by":"crossref","first-page":"105430","DOI":"10.1016\/j.compag.2020.105430","article-title":"Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data","volume":"173","author":"Zhu","year":"2020","journal-title":"Comput. Electron. Agric."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923007159?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923007159?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,11]],"date-time":"2024-01-11T07:29:33Z","timestamp":1704958173000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169923007159"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11]]},"references-count":82,"alternative-id":["S0168169923007159"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.108327","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2023,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Reference evapotranspiration projections in Southern Spain (until 2100) using temperature-based machine learning models","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.108327","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108327"}}