{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:05:12Z","timestamp":1732043112960},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,12,1]],"date-time":"2023-12-01T00:00:00Z","timestamp":1701388800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,12]]},"DOI":"10.1016\/j.compag.2023.108205","type":"journal-article","created":{"date-parts":[[2023,11,4]],"date-time":"2023-11-04T11:09:51Z","timestamp":1699096191000},"page":"108205","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Lightweight green citrus fruit detection method for practical environmental applications"],"prefix":"10.1016","volume":"215","author":[{"given":"Jianqiang","family":"Lu","sequence":"first","affiliation":[]},{"given":"Pingfu","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Chaoran","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Yubin","family":"Lan","sequence":"additional","affiliation":[]},{"given":"Linhui","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Ruifan","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Hongyu","family":"Niu","sequence":"additional","affiliation":[]},{"given":"Huhu","family":"Chang","sequence":"additional","affiliation":[]},{"given":"Jiajun","family":"Yuan","sequence":"additional","affiliation":[]},{"given":"Liang","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2023.108205_b0005","unstructured":"Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y. M. J. A., 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection. abs\/2004.10934."},{"key":"10.1016\/j.compag.2023.108205_b0010","unstructured":"Cheng, Q., 2022. Research on Fuzzy License Plate Recognition Algorithm Based on Deep Learning. (Master), Jilin University, Available from Cnki."},{"key":"10.1016\/j.compag.2023.108205_b0015","unstructured":"Feng, Y., 2019. Research on field multi-cluster kiwifruit fruit detection method based on deep learning. (Master), Northwest A&F Universit, Available from Cnki."},{"key":"10.1016\/j.compag.2023.108205_b0020","unstructured":"Gao, W., 2011. Research and Implementation of Automatic Recognition Algorithm for Motion Blur License Plate. (Master), Southwest Jiaotong University, Available from Cnki."},{"key":"10.1016\/j.compag.2023.108205_b0025","doi-asserted-by":"crossref","unstructured":"Girshick, R. B., Donahue, J., Darrell, T., Malik, J. J. I. C. o. C. V., Recognition, P., 2014. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 580-587.","DOI":"10.1109\/CVPR.2014.81"},{"key":"10.1016\/j.compag.2023.108205_b0030","doi-asserted-by":"crossref","unstructured":"Girshick, R.B., 2015. Fast R-CNN. IEEE International Conference on Computer Vision, pp. 1440-1448.","DOI":"10.1109\/ICCV.2015.169"},{"key":"10.1016\/j.compag.2023.108205_b0035","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., & Girshick, R. B. J. I. I. C. o. C. V., 2017. Mask R-CNN. 2980-2988.","DOI":"10.1109\/ICCV.2017.322"},{"key":"10.1016\/j.compag.2023.108205_b0040","series-title":"In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"13713","article-title":"Coordinate attention for efficient mobile network design","author":"Hou","year":"2021"},{"key":"10.1016\/j.compag.2023.108205_b0045","unstructured":"Hou, K., 2022. Research and application of image deblurring method based on deep learning. (Master), Nanjing University of Information Technology, Available from Cnki."},{"key":"10.1016\/j.compag.2023.108205_b0050","unstructured":"Howard, A. G., et al., 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. abs\/1704.04861."},{"key":"10.1016\/j.compag.2023.108205_b0055","doi-asserted-by":"crossref","unstructured":"Howard, A. G., et al., 2019. Searching for MobileNetV3. 1314-1324.","DOI":"10.1109\/ICCV.2019.00140"},{"key":"10.1016\/j.compag.2023.108205_b0060","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132-7141.","DOI":"10.1109\/CVPR.2018.00745"},{"key":"10.1016\/j.compag.2023.108205_b0065","unstructured":"Huang, T., et al., 2022. Citrus fruit recognition method based on improved model of YOLOv5. J. Huazhong Agric. Univ. (Nat. Sci. Ed.), pp. 1-8."},{"issue":"06","key":"10.1016\/j.compag.2023.108205_b0070","first-page":"727","article-title":"Design of citrus fruit recognition system based on edge computing","volume":"47","author":"Huang","year":"2021","journal-title":"J. Hunan Agric. Univ. (Natural Science Edition)"},{"issue":"14","key":"10.1016\/j.compag.2023.108205_b0075","first-page":"163","article-title":"An Efficient Detection Model for Green Target Fruit Based on Optimized Transformer Network","volume":"37","author":"Jia","year":"2021","journal-title":"Chinese J. Agri. Eng."},{"key":"10.1016\/j.compag.2023.108205_b0080","doi-asserted-by":"crossref","first-page":"724","DOI":"10.1016\/j.crfs.2021.10.003","article-title":"Detection of mold on the food surface using YOLOv5","volume":"4","author":"Jubayer","year":"2021","journal-title":"Current Res. Food Sci."},{"key":"10.1016\/j.compag.2023.108205_b0085","unstructured":"Li, X., Li, F., Han, D., Xu, X., 2017. Research on Agricultural Image Denoising Based on Visual Filter Operator. J. Shanxi Agric. Univ. (Nat. Sci. Ed.) 37(09), 670-673+678. doi: 10.13842\/j.cnki.issn1671-8151.2017.09.011."},{"issue":"01","key":"10.1016\/j.compag.2023.108205_b0090","first-page":"70","article-title":"Detection method of ripe mangoes on trees based on improved YOLOv3","volume":"52","author":"Li","year":"2021","journal-title":"J. Shenyang Agric. Univ."},{"issue":"09","key":"10.1016\/j.compag.2023.108205_b0095","first-page":"202","article-title":"Method and Experiment of Forest Falling Fruit Recognition Based on Deep Learning","volume":"42","author":"Li","year":"2021","journal-title":"Chinese J. Agric. Mech."},{"key":"10.1016\/j.compag.2023.108205_b0100","doi-asserted-by":"crossref","unstructured":"Liu, Y., Wang, J., Li, J., Niu, S., Song, H. H. J. I. I. o. T. J. (2022). Machine Learning for the Detection and Identification of Internet of Things Devices: A Survey 9, 298-320.","DOI":"10.1109\/JIOT.2021.3099028"},{"key":"10.1016\/j.compag.2023.108205_b0105","doi-asserted-by":"crossref","unstructured":"Liu, Y., Wang, J., Li, J., Niu, S., Wu, L., Song, H. H. J. I. I. o. T. J., 2022. Zero-Bias Deep-Learning-Enabled Quickest Abnormal Event Detection in IoT. 9, 11385-11395.","DOI":"10.1109\/JIOT.2021.3126819"},{"key":"10.1016\/j.compag.2023.108205_b0110","doi-asserted-by":"crossref","unstructured":"Liu, Y., et al., 2021. Zero-bias Deep Neural Network for Quickest RF Signal Surveillance, pp. 1-8.","DOI":"10.1109\/IPCCC51483.2021.9679426"},{"key":"10.1016\/j.compag.2023.108205_b0115","unstructured":"Lu, M., 2021. Research on image recognition of coal gangue based on deep learning. (Master), Anhui University of Science and Technology, Available from Cnki."},{"key":"10.1016\/j.compag.2023.108205_b0120","series-title":"Paper presented at the ECCV","article-title":"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design","author":"Ma","year":"2018"},{"key":"10.1016\/j.compag.2023.108205_b0125","doi-asserted-by":"crossref","unstructured":"Niu, S., Liu, Y., Wang, J., Song, H. H. J. I. T. o. A. I. (2020). A Decade Survey of Transfer Learning (2010\u20132020). 1, 151-166.","DOI":"10.1109\/TAI.2021.3054609"},{"key":"10.1016\/j.compag.2023.108205_b0130","doi-asserted-by":"crossref","unstructured":"Niu, S., Jiang, Y., Chen, B., Wang, J., Liu, Y., Song, H. H. J. A. T. M. I. S. (2022). Cross-Modality Transfer Learning for Image-Text Information Management. 13, 5:1-5:14.","DOI":"10.1145\/3464324"},{"key":"10.1016\/j.compag.2023.108205_b0135","unstructured":"Redmon, J., Farhadi, A. J. A. (2018). YOLOv3: An Incremental Improvement. abs\/1804.02767."},{"key":"10.1016\/j.compag.2023.108205_b0140","doi-asserted-by":"crossref","unstructured":"Redmon, J., Farhadi, A. J. I. C. o. C. V., Recognition, P., 2017. YOLO9000: Better, Faster, Stronger, pp. 6517-6525.","DOI":"10.1109\/CVPR.2017.690"},{"key":"10.1016\/j.compag.2023.108205_b0145","doi-asserted-by":"crossref","unstructured":"Ren, S., He, K., Girshick, R. B., Sun, J. J. I. T. o. P. A., Intelligence, M., 2015. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. 39, 1137-1149.","DOI":"10.1109\/TPAMI.2016.2577031"},{"key":"10.1016\/j.compag.2023.108205_b0150","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., Chen, L.-C. J. I. C. C. o. C. V., Recognition, P. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks, pp. 4510-4520.","DOI":"10.1109\/CVPR.2018.00474"},{"issue":"12","key":"10.1016\/j.compag.2023.108205_b0155","first-page":"95","article-title":"Advances in Smart Agriculture Research and Practice","volume":"8","author":"Song","year":"2018","journal-title":"J. Agron."},{"issue":"11","key":"10.1016\/j.compag.2023.108205_b0160","first-page":"159","article-title":"Identification algorithm of green citrus in natural environment based on improved YOLOV3","volume":"42","author":"Song","year":"2021","journal-title":"Chinese J. Agric. Mech."},{"issue":"06","key":"10.1016\/j.compag.2023.108205_b0165","first-page":"32","article-title":"Real-time detection of passion fruit based on improved YOLO-V3 network","volume":"38","author":"Tang","year":"2020","journal-title":"J. Guangxi Normal Univ. (Natural Science Edition)"},{"key":"10.1016\/j.compag.2023.108205_b0170","unstructured":"Vaswani, A., et al., 2017. Attention is All you Need. abs\/1706.03762."},{"key":"10.1016\/j.compag.2023.108205_b0175","doi-asserted-by":"crossref","unstructured":"Wang, X., Xie, L., Dong, C., Shan, Y. J. I. C. I. C. o. C. V. W., 2021. Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data, pp. 1905-1914.","DOI":"10.1109\/ICCVW54120.2021.00217"},{"key":"10.1016\/j.compag.2023.108205_b0180","series-title":"In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition","first-page":"11534","article-title":"ECA-Net: Efficient channel attention for deep convolutional neural networks","author":"Wang","year":"2020"},{"key":"10.1016\/j.compag.2023.108205_b0185","unstructured":"Wang, Y., 2015. Design and Realization of Image Acquisition and Transmission System of Textile Defect Detector. (Master), Northeastern University, Available from Cnki."},{"issue":"07","key":"10.1016\/j.compag.2023.108205_b0190","first-page":"173","article-title":"An improved YOLOv2 identification method for unripe mangoes","volume":"34","author":"Xue","year":"2018","journal-title":"J Chinese J. Agri. Eng."},{"key":"10.1016\/j.compag.2023.108205_b0195","doi-asserted-by":"crossref","unstructured":"Yao, J., Qi, J., Zhang, J., Shao, H., Yang, J., Li, X., 2021. A Real-Time Detection Algorithm for Kiwifruit Defects Based on YOLOv5. 10(14), 1711.","DOI":"10.3390\/electronics10141711"},{"key":"10.1016\/j.compag.2023.108205_b0200","doi-asserted-by":"crossref","unstructured":"Ye, C., Wang, Y., Wang, Y., Tie, M. J. P. o. t. I. o. M. E., 2021. Steering angle prediction YOLOv5-based end-to-end adaptive neural network control for autonomous vehicles, Part D: J. Automobile Eng. 236, 1991-2011.","DOI":"10.1177\/09544070211053677"},{"key":"10.1016\/j.compag.2023.108205_b0205","unstructured":"Zhao, H., 2019. Research on detection and localization method of field apple based on Kinect. (Master), Northwest A&F Universit, Available from Cnki."},{"issue":"06","key":"10.1016\/j.compag.2023.108205_b0210","first-page":"1493","article-title":"Detection and recognition analysis of blueberry canopy fruits based on Faster R-CNN","volume":"51","author":"Zhu","year":"2020","journal-title":"Southern Agric. J."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923005938?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923005938?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,11]],"date-time":"2023-12-11T10:50:31Z","timestamp":1702291831000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169923005938"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12]]},"references-count":42,"alternative-id":["S0168169923005938"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.108205","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2023,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Lightweight green citrus fruit detection method for practical environmental applications","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.108205","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"108205"}}