{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T13:13:12Z","timestamp":1723209192000},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1016\/j.compag.2023.108119","type":"journal-article","created":{"date-parts":[[2023,8,7]],"date-time":"2023-08-07T11:56:15Z","timestamp":1691409375000},"page":"108119","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["GANPose: Pose estimation of grouped pigs using a generative adversarial network"],"prefix":"10.1016","volume":"212","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2998-3912","authenticated-orcid":false,"given":"Zehua","family":"Wang","sequence":"first","affiliation":[]},{"given":"Suyin","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Ping","family":"Yin","sequence":"additional","affiliation":[]},{"given":"Aijun","family":"Xu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5796-3612","authenticated-orcid":false,"given":"Junhua","family":"Ye","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2023.108119_b0005","doi-asserted-by":"crossref","unstructured":"Cao, Z. et al., 2017. Realtime multi-person 2d pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.","DOI":"10.1109\/CVPR.2017.143"},{"key":"10.1016\/j.compag.2023.108119_b0010","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2019.105003","article-title":"Detection of aggressive behaviours in pigs using a RealSence depth sensor","volume":"166","author":"Chen","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108119_b0015","doi-asserted-by":"crossref","unstructured":"Chen, Y. et al., 2017. Adversarial posenet: a structure-aware convolutional network for human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision.","DOI":"10.1109\/ICCV.2017.137"},{"key":"10.1016\/j.compag.2023.108119_b0020","doi-asserted-by":"crossref","unstructured":"Chen, Y., et al. (2018). Cascaded pyramid network for multi-person pose estimation. Proceedings of the IEEE conference on computer vision and pattern recognition.","DOI":"10.1109\/CVPR.2018.00742"},{"key":"10.1016\/j.compag.2023.108119_b0025","doi-asserted-by":"crossref","unstructured":"Choi, Y., et al. (2018). Stargan: Unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.","DOI":"10.1109\/CVPR.2018.00916"},{"key":"10.1016\/j.compag.2023.108119_b0030","series-title":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","article-title":"Self adversarial training for human pose estimation","author":"Chou","year":"2018"},{"key":"10.1016\/j.compag.2023.108119_b0035","doi-asserted-by":"crossref","first-page":"108049","DOI":"10.1109\/ACCESS.2019.2933060","article-title":"Automated individual pig localisation, tracking and behaviour metric extraction using deep learning","volume":"7","author":"Cowton","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.compag.2023.108119_b0040","doi-asserted-by":"crossref","first-page":"108049","DOI":"10.1109\/ACCESS.2019.2933060","article-title":"Automated individual pig localisation, tracking and behaviour metric extraction using deep learning","volume":"7","author":"Cowton","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.compag.2023.108119_b0045","series-title":"Cross-modality Person Re-identification with Generative Adversarial Training","author":"Dai","year":"2018"},{"key":"10.1016\/j.compag.2023.108119_b0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2013.01.003","article-title":"Sow-activity classification from acceleration patterns: a machine learning approach","volume":"93","author":"Escalante","year":"2013","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108119_b0055","doi-asserted-by":"crossref","unstructured":"Fang, H.S., Xie, S., Tai, Y.W. et al., 2017. Rmpe: Regional multi-person pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2334\u20132343.","DOI":"10.1109\/ICCV.2017.256"},{"key":"10.1016\/j.compag.2023.108119_b0060","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105863","article-title":"Pose estimation and behavior classifi-cation of broiler chickens based on deep neural networks","volume":"180","author":"Fang","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108119_b0065","doi-asserted-by":"crossref","unstructured":"Farahnakian, F. et al., 2021. Multi-pig pose estimation using DeepLabCut. In: 2021 11th International Conference on Intelligent Control and Information Processing (ICICIP). IEEE.","DOI":"10.1109\/ICICIP53388.2021.9642168"},{"key":"10.1016\/j.compag.2023.108119_b0070","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106357","article-title":"Automated detection and analysis of social behaviors among preweaning piglets using keypoint-based spatial and temporal features","volume":"188","author":"Gan","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108119_b0075","unstructured":"Goodfellow, I. et al., 2014. Generative adversarial nets. In: Advances in Neural Information Processing Systems, Vol. 27."},{"key":"10.1016\/j.compag.2023.108119_b0080","doi-asserted-by":"crossref","DOI":"10.7554\/eLife.47994","article-title":"DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning","volume":"8","author":"Graving","year":"2019","journal-title":"Elife"},{"key":"10.1016\/j.compag.2023.108119_b0085","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.compind.2018.02.016","article-title":"Towards on-farm pig face recognition using convolutional neural networks","volume":"98","author":"Hansen","year":"2018","journal-title":"Comput. Ind."},{"key":"10.1016\/j.compag.2023.108119_b0090","doi-asserted-by":"crossref","unstructured":"Insafutdinov, E. et al., 2016. Deepercut: a deeper, stronger, and faster multi-person pose estimation model. In: European Conference on Computer Vision. Springer.","DOI":"10.1007\/978-3-319-46466-4_3"},{"key":"10.1016\/j.compag.2023.108119_b0095","doi-asserted-by":"crossref","unstructured":"Isola, P. et al., 2017. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.","DOI":"10.1109\/CVPR.2017.632"},{"key":"10.1016\/j.compag.2023.108119_b0100","doi-asserted-by":"crossref","unstructured":"Kearney, S. et al., 2020. RGBD-dog: predicting canine pose from RGBD sensors. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition.","DOI":"10.1109\/CVPR42600.2020.00836"},{"key":"10.1016\/j.compag.2023.108119_b0105","doi-asserted-by":"crossref","unstructured":"Kreiss, S. et al., 2019. Pifpaf: composite fields for human pose estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition.","DOI":"10.1109\/CVPR.2019.01225"},{"issue":"9","key":"10.1016\/j.compag.2023.108119_b0110","doi-asserted-by":"crossref","first-page":"843","DOI":"10.3390\/agriculture11090843","article-title":"Behavior trajectory tracking of piglets based on DLC-KPCA","volume":"11","author":"Liu","year":"2021","journal-title":"Agriculture"},{"key":"10.1016\/j.compag.2023.108119_b0115","unstructured":"Luc, P. et al., 2016. Semantic segmentation using adversarial networks. arXiv preprint arXiv:1611.08408."},{"key":"10.1016\/j.compag.2023.108119_b0120","doi-asserted-by":"crossref","unstructured":"Maselyne, J., Adriaens, I., Huybrechts, T., De Ketelaere, B., Millet, S., Vangeyte, J., Van Nuffel, A., Saeys, W., 2015. Measuring the drinking behaviour of individual pigs housed in group using radio frequency identification (RFID). Animal 10(9).","DOI":"10.1017\/S1751731115000774"},{"issue":"9","key":"10.1016\/j.compag.2023.108119_b0125","doi-asserted-by":"crossref","first-page":"1281","DOI":"10.1038\/s41593-018-0209-y","article-title":"DeepLabCut: markerless pose estimation of user-defined body parts with deep learning","volume":"21","author":"Mathis","year":"2018","journal-title":"Nat. Neurosci."},{"key":"10.1016\/j.compag.2023.108119_b0130","unstructured":"Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784."},{"key":"10.1016\/j.compag.2023.108119_b0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106931","article-title":"Pose estimation-based lameness recognition in broiler using CNN-LSTM network","volume":"197","author":"Nasiri","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108119_b0140","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.jveb.2021.06.006","article-title":"Instrumented pig gait analysis: state-of-the-art","volume":"45","author":"Netukova","year":"2021","journal-title":"J. Vet. Behav."},{"key":"10.1016\/j.compag.2023.108119_b0145","doi-asserted-by":"crossref","unstructured":"Newell, A. et al., 2016. Stacked hourglass networks for human pose estimation. In: European Conference on Computer Vision. Springer.","DOI":"10.1007\/978-3-319-46484-8_29"},{"key":"10.1016\/j.compag.2023.108119_b0150","doi-asserted-by":"crossref","unstructured":"Pereira, T.D. et al., 2020. SLEAP: multi-animal pose tracking. BioRxiv.","DOI":"10.1101\/2020.08.31.276246"},{"issue":"4","key":"10.1016\/j.compag.2023.108119_b0155","article-title":"GPS tracking of free-ranging pigs to evaluate ring strategies for the control of cysticercosis\/taeniasis in Peru","volume":"10","author":"Pray Ian","year":"2016","journal-title":"PLoS Negl. Trop. Dis."},{"issue":"4","key":"10.1016\/j.compag.2023.108119_b0160","doi-asserted-by":"crossref","first-page":"852","DOI":"10.3390\/s19040852","article-title":"Multi-pig part detection and association with a fully-convolutional network","volume":"19","author":"Psota","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2023.108119_b0165","doi-asserted-by":"crossref","unstructured":"Qiu, L. et al., 2020. Peeking into occluded joints: a novel framework for crowd pose estimation. In: European Conference on Computer Vision. Springer.","DOI":"10.1007\/978-3-030-58529-7_29"},{"key":"10.1016\/j.compag.2023.108119_b0170","unstructured":"Radford, A. et al., 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434."},{"key":"10.1016\/j.compag.2023.108119_b0175","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105391","article-title":"Automatically detecting pig position and posture by 2D camera imaging and deep learning","volume":"174","author":"Riekert","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108119_b0180","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106559","article-title":"T-LEAP: Occlusion-robust pose estimation of walking cows using temporal information","volume":"192","author":"Russello","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108119_b0185","doi-asserted-by":"crossref","unstructured":"Sun, K. et al., 2019. Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition.","DOI":"10.1109\/CVPR.2019.00584"},{"key":"10.1016\/j.compag.2023.108119_b0190","doi-asserted-by":"crossref","unstructured":"Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M., 2023. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7464\u20137475.","DOI":"10.1109\/CVPR52729.2023.00721"},{"issue":"4","key":"10.1016\/j.compag.2023.108119_b0195","doi-asserted-by":"crossref","first-page":"581","DOI":"10.3390\/agriengineering2040039","article-title":"Investigation of pig activity based on video data and semi-supervised neural networks","volume":"2","author":"Wutke","year":"2020","journal-title":"AgriEngineering"},{"key":"10.1016\/j.compag.2023.108119_b0200","doi-asserted-by":"crossref","unstructured":"Xiao, B. et al., 2018. Simple baselines for human pose estimation and tracking. In: Proceedings of the European Conference on Computer Vision (ECCV).","DOI":"10.1007\/978-3-030-01231-1_29"},{"key":"10.1016\/j.compag.2023.108119_b0205","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106746","article-title":"Automatic scoring of postures in grouped pigs using depth image and CNN-SVM","volume":"194","author":"Xu","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.108119_b0210","doi-asserted-by":"crossref","DOI":"10.1016\/j.applanim.2020.105146","article-title":"A review of video-based pig behavior recognition","volume":"233","author":"Yang","year":"2020","journal-title":"Appl. Anim. Behav. Sci."},{"key":"10.1016\/j.compag.2023.108119_b0215","doi-asserted-by":"crossref","unstructured":"Yik, S. et al., 2020. DIAT (Depth-Infrared Image Annotation Transfer) for training a depth-based pig-pose detector. In: 2020 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.","DOI":"10.1109\/IROS45743.2020.9340744"},{"key":"10.1016\/j.compag.2023.108119_b0220","doi-asserted-by":"crossref","unstructured":"Zhang, F. et al., 2020. Distribution-aware coordinate representation for human pose estimation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition.","DOI":"10.1109\/CVPR42600.2020.00712"},{"key":"10.1016\/j.compag.2023.108119_b0225","doi-asserted-by":"crossref","unstructured":"Zhu, J.-Y. et al., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision.","DOI":"10.1109\/ICCV.2017.244"}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923005070?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923005070?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,10]],"date-time":"2023-09-10T07:00:53Z","timestamp":1694329253000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169923005070"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9]]},"references-count":45,"alternative-id":["S0168169923005070"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.108119","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2023,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"GANPose: Pose estimation of grouped pigs using a generative adversarial network","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.108119","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108119"}}