{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T05:52:52Z","timestamp":1726379572389},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.compag.2023.107987","type":"journal-article","created":{"date-parts":[[2023,6,19]],"date-time":"2023-06-19T06:18:57Z","timestamp":1687155537000},"page":"107987","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Detection of calf abnormal respiratory behavior based on frame difference and improved YOLOv5 method"],"prefix":"10.1016","volume":"211","author":[{"given":"Fanguo","family":"Zeng","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5122-5515","authenticated-orcid":false,"given":"Bin","family":"Li","sequence":"additional","affiliation":[]},{"given":"Haifeng","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Nan","family":"Jia","sequence":"additional","affiliation":[]},{"given":"Yuliang","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Wenwen","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.compag.2023.107987_b0005","doi-asserted-by":"crossref","first-page":"1475","DOI":"10.13031\/trans.12451","article-title":"Continuous respiration rate measurement of heat-stressed dairy cows and relation to environment, body temperature, and lying time","volume":"61","author":"Atkins","year":"2018","journal-title":"Trans. ASABE"},{"issue":"1","key":"10.1016\/j.compag.2023.107987_b0010","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1016\/j.cvfa.2008.10.002","article-title":"Respiratory distress syndrome in calves","volume":"25","author":"Bleul","year":"2009","journal-title":"Vet. Clin. N. Am. Food Anim. Pract."},{"key":"10.1016\/j.compag.2023.107987_b0015","unstructured":"Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M., 2020. Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934."},{"issue":"11","key":"10.1016\/j.compag.2023.107987_b0020","doi-asserted-by":"crossref","first-page":"12009","DOI":"10.3168\/jds.2021-20373","article-title":"Early prediction of respiratory disease in preweaning dairy calves using feeding and activity behaviors","volume":"104","author":"Bowen","year":"2021","journal-title":"J. Dairy Sci."},{"key":"10.1016\/j.compag.2023.107987_b0025","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.prevetmed.2018.05.004","article-title":"Validation of a clinical scoring system for bovine respiratory disease complex diagnosis in preweaned dairy calves using a Bayesian framework","volume":"156","author":"Buczinski","year":"2018","journal-title":"Prev. Vet. Med."},{"key":"10.1016\/j.compag.2023.107987_b0030","doi-asserted-by":"crossref","DOI":"10.3389\/fanim.2022.852359","article-title":"Using machine learning and behavioral patterns observed by automated feeders and accelerometers for the early indication of clinical bovine respiratory disease status in Preweaned dairy calves","volume":"3","author":"Cantor","year":"2022","journal-title":"Front. Anim. Sci."},{"key":"10.1016\/j.compag.2023.107987_b0035","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.114514","article-title":"Identification of rice plant diseases using lightweight attention networks","volume":"169","author":"Chen","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compag.2023.107987_b0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2019.105003","article-title":"Detection of aggressive behaviours in pigs using a RealSence depth sensor","volume":"166","author":"Chen","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107987_b0045","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106255","article-title":"Behaviour recognition of pigs and cattle: journey from computer vision to deep learning","volume":"187","author":"Chen","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107987_b0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106741","article-title":"Activity detection of suckling piglets based on motion area analysis using frame differences in combination with convolution neural network","volume":"194","author":"Ding","year":"2022","journal-title":"Comput. Electron. Agric."},{"issue":"5","key":"10.1016\/j.compag.2023.107987_b0055","doi-asserted-by":"crossref","first-page":"1599","DOI":"10.13031\/2013.11066","article-title":"Development of a respiration rate monitor for swine","volume":"45","author":"Eigenberg","year":"2002","journal-title":"Trans. ASAE"},{"issue":"6","key":"10.1016\/j.compag.2023.107987_b0060","doi-asserted-by":"crossref","first-page":"7095","DOI":"10.3168\/jds.2020-19471","article-title":"Scoping review on clinical definition of bovine respiratory disease complex and related clinical signs in dairy cows","volume":"104","author":"Ferraro","year":"2021","journal-title":"J. Dairy Sci."},{"issue":"20","key":"10.1016\/j.compag.2023.107987_b0065","first-page":"187","article-title":"Voice recognition of abnormal state of pigs based on improved CNN","volume":"37","author":"Geng","year":"2021","journal-title":"Trans. Chin. Soc. Agric. Eng."},{"key":"10.1016\/j.compag.2023.107987_b0070","unstructured":"Han, J., Fang, P., Li, W., Hong, J., Armin, M.A., Reid, I., Petersson, L., Li, H., 2022. You only cut once: Boosting data augmentation with a single cut. In: International Conference on Machine Learning. PMLR, pp. 8196\u20138212."},{"key":"10.1016\/j.compag.2023.107987_b0075","unstructured":"Hassanin, M., Anwar, S., Radwan, I., Khan, F.S., Mian, A., 2022. Visual attention methods in deep learning: an in-depth survey. arXiv preprint arXiv:2204.07756."},{"issue":"5","key":"10.1016\/j.compag.2023.107987_b0080","first-page":"231","article-title":"Review of perceiving animal information and behavior in precision livestock farming","volume":"47","author":"He","year":"2016","journal-title":"Trans. Chin. Soc. Agric. Mach."},{"key":"10.1016\/j.compag.2023.107987_b0085","doi-asserted-by":"crossref","unstructured":"Hou, Q., Zhou, D., Feng, J., 2021. Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 13713\u201313722.","DOI":"10.1109\/CVPR46437.2021.01350"},{"key":"10.1016\/j.compag.2023.107987_b0090","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132\u20137141.","DOI":"10.1109\/CVPR.2018.00745"},{"issue":"5","key":"10.1016\/j.compag.2023.107987_b0095","doi-asserted-by":"crossref","first-page":"1242","DOI":"10.1109\/TBME.2018.2871638","article-title":"Wearable devices for precision medicine and health state monitoring","volume":"66","author":"Jeong","year":"2018","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"1","key":"10.1016\/j.compag.2023.107987_b0100","first-page":"191","article-title":"Video analysis for tachypnea of pigs based on fluctuating ridge-abdomen","volume":"27","author":"Ji","year":"2011","journal-title":"Trans. Chin. Soc. Agric. Eng."},{"issue":"07","key":"10.1016\/j.compag.2023.107987_b0110","first-page":"693","article-title":"Infrared and visible image fusion algorithm based on Gaussian fuzzy logic and adaptive dual-channel spiking cortical model","volume":"44","author":"Li","year":"2022","journal-title":"Infrared Technol."},{"key":"10.1016\/j.compag.2023.107987_b0115","doi-asserted-by":"crossref","unstructured":"Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., Berg, A. C., 2016. Ssd: Single shot multibox detector. In: Computer Vision\u2013ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, Proceedings, Part I 14. Springer International Publishing, spp. 21\u201337.","DOI":"10.1007\/978-3-319-46448-0_2"},{"issue":"8","key":"10.1016\/j.compag.2023.107987_b0120","doi-asserted-by":"crossref","first-page":"535","DOI":"10.3390\/ani9080535","article-title":"Infrared thermography\u2014a non-invasive method of measuring respiration rate in calves","volume":"9","author":"Lowe","year":"2019","journal-title":"Animals"},{"issue":"24","key":"10.1016\/j.compag.2023.107987_b0125","first-page":"183","article-title":"Monitoring pig respiration frequency using Wi-Fi wireless sensing technology","volume":"35","author":"Lu","year":"2019","journal-title":"Trans. Chin. Soc. Agric. Eng."},{"issue":"8","key":"10.1016\/j.compag.2023.107987_b0130","article-title":"Ultrasonographic diagnosis of clinical and subclinical bovine respiratory disease in Holstein calves","volume":"15","author":"Mahmoud","year":"2022","journal-title":"Veterinary World"},{"key":"10.1016\/j.compag.2023.107987_b0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106313","article-title":"A systematic literature review on deep learning applications for precision cattle farming","volume":"187","author":"Mahmud","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107987_b0140","doi-asserted-by":"crossref","unstructured":"Migliore, D.A., Matteucci, M., Naccari, M., 2006. A revaluation of frame difference in fast and robust motion detection. In: Proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks, pp. 215-218.","DOI":"10.1145\/1178782.1178815"},{"issue":"12","key":"10.1016\/j.compag.2023.107987_b0145","doi-asserted-by":"crossref","first-page":"5434","DOI":"10.2527\/jas.2016-0904","article-title":"Technical note: Device for measuring respiration rate of cattle under field conditions","volume":"94","author":"Milan","year":"2016","journal-title":"J Anim Sci"},{"issue":"4","key":"10.1016\/j.compag.2023.107987_b0150","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.biosystemseng.2014.01.005","article-title":"Classification of aggressive behaviour in pigs by activity index and multilayer feed forward neural network","volume":"119","author":"Oczak","year":"2014","journal-title":"Biosyst. Eng."},{"issue":"1","key":"10.1016\/j.compag.2023.107987_b0155","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.cvfa.2008.10.007","article-title":"Respiratory disease of the bovine neonate","volume":"25","author":"Poulsen","year":"2009","journal-title":"Vet. Clin. N. Am. Food Anim. Pract."},{"key":"10.1016\/j.compag.2023.107987_b0160","doi-asserted-by":"crossref","unstructured":"Qi, J., Liu, X., Liu, K., Xu, F., Guo, H., Tian, X., Li, M., Bao, Z., .Li, Y, 2022. An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease. Comput. Electron. Agric. 194, 106780.","DOI":"10.1016\/j.compag.2022.106780"},{"key":"10.1016\/j.compag.2023.107987_b0165","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106650","article-title":"C3D-ConvLSTM based cow behaviour classification using video data for precision livestock farming","volume":"193","author":"Qiao","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107987_b0170","doi-asserted-by":"crossref","unstructured":"Redmon, J., Farhadi, A., 2017. YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, America, pp. 7263\u20137271.","DOI":"10.1109\/CVPR.2017.690"},{"key":"10.1016\/j.compag.2023.107987_b0175","unstructured":"Redmon, J., Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767."},{"key":"10.1016\/j.compag.2023.107987_b0180","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, America, pp. 779\u2013788.","DOI":"10.1109\/CVPR.2016.91"},{"key":"10.1016\/j.compag.2023.107987_b0185","unstructured":"Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: towards real-time object detection with region proposal networks. Adv. Neural Information Process. Syst. 28."},{"issue":"4","key":"10.1016\/j.compag.2023.107987_b0190","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1007\/s00484-010-0360-y","article-title":"Determinants of bovine thermal response to heat and solar radiation exposures in a field environment","volume":"55","author":"Scharf","year":"2011","journal-title":"Int. J. Biometerorol."},{"issue":"17","key":"10.1016\/j.compag.2023.107987_b0195","first-page":"215","article-title":"Respiratory behavior detection of cow based on Lucas-Kanade sparse optical flow algorithm","volume":"35","author":"Song","year":"2019","journal-title":"Trans. Chin. Soc. Agric. Eng."},{"issue":"5","key":"10.1016\/j.compag.2023.107987_b0200","doi-asserted-by":"crossref","first-page":"3893","DOI":"10.3168\/jds.2016-12055","article-title":"The use of infrared thermography and accelerometers for remote monitoring of dairy cow health and welfare","volume":"100","author":"Stewart","year":"2017","journal-title":"J. Dairy Sci."},{"key":"10.1016\/j.compag.2023.107987_b0205","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106913","article-title":"Frequency modulated continuous wave radar-based system for monitoring dairy cow respiration rate","volume":"196","author":"Tuan","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107987_b0210","unstructured":"Tzutalin, D., 2015. LabelImg.Git code. Available from: ."},{"key":"10.1016\/j.compag.2023.107987_b0215","doi-asserted-by":"crossref","unstructured":"Upadhya, V., Chatterjee, A., Prathosh, A.P., Praveena, P., 2016. Respiration Monitoring through Thoraco-abdominal Video with an LSTM. In: 2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 165\u2013171.","DOI":"10.1109\/BIBE.2016.37"},{"key":"10.1016\/j.compag.2023.107987_b0220","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.compag.2016.07.014","article-title":"Early recognition of bovine respiratory disease in calves using automated continuous monitoring of cough sounds","volume":"129","author":"Vandermeulen","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107987_b0225","doi-asserted-by":"crossref","unstructured":"Woo, S., Park, J., Lee, J.Y., Kweon, I.S., 2018. Cbam: Convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp. 3\u201319.","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"10.1016\/j.compag.2023.107987_b0230","doi-asserted-by":"crossref","first-page":"116","DOI":"10.21423\/bovine-vol39no2p116-124","article-title":"Baseline man-agement practices and animal health data reported by US feedlots responding to a survey regarding acute interstitial pneumonia","author":"Woolums","year":"2005","journal-title":"Bovine Practitioner"},{"key":"10.1016\/j.compag.2023.107987_b0235","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.biosystemseng.2020.01.012","article-title":"Detection of the respiratory rate of standing cows by combining the Deeplab V3+ semantic segmentation model with the phase-based video magnification algorithm","volume":"192","author":"Wu","year":"2020","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2023.107987_b0240","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107543","article-title":"GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases","volume":"204","author":"Yang","year":"2023","journal-title":"Comput. Electron. Agric."},{"issue":"10","key":"10.1016\/j.compag.2023.107987_b0245","first-page":"258","article-title":"Detection of breathing rate and abnormity of dairy cattle based on video analysis","volume":"45","author":"Zhao","year":"2014","journal-title":"Trans. Chin. Soc. Agric. Machinery"}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923003757?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923003757?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,10,12]],"date-time":"2023-10-12T02:19:35Z","timestamp":1697077175000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169923003757"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":48,"alternative-id":["S0168169923003757"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.107987","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Detection of calf abnormal respiratory behavior based on frame difference and improved YOLOv5 method","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.107987","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107987"}}