{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T06:34:30Z","timestamp":1726036470285},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,7]]},"DOI":"10.1016\/j.compag.2023.107898","type":"journal-article","created":{"date-parts":[[2023,5,10]],"date-time":"2023-05-10T02:56:36Z","timestamp":1683687396000},"page":"107898","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Unsupervised anomaly analysis-based manufacturing quality test and grading method for combine harvesters"],"prefix":"10.1016","volume":"210","author":[{"given":"Xindong","family":"Ni","sequence":"first","affiliation":[]},{"given":"Kaidong","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Xiaoyi","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Xu","family":"Mao","sequence":"additional","affiliation":[]},{"given":"Du","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Shumao","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.compag.2023.107898_b0005","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1016\/j.ifacol.2018.07.106","article-title":"Implementing Industry 4.0 in Discrete Manufacturing: Options and Drawbacks","volume":"51","author":"Arm","year":"2018","journal-title":"IFAC-PapersOnLine"},{"issue":"3","key":"10.1016\/j.compag.2023.107898_b0010","doi-asserted-by":"crossref","DOI":"10.1115\/1.4050376","article-title":"Quality Deviation Control for Aircraft Using Digital Twin","volume":"21","author":"Cai","year":"2021","journal-title":"J. Comput. Inf. Sci. Eng."},{"key":"10.1016\/j.compag.2023.107898_b0015","unstructured":"Chalapathy, R., & Chawla, S. 2019. Deep Learning for Anomaly Detection A Survey. arXiv preprint arXiv, pp. 1901.03407. doi: https:\/\/doi.org\/10.48550\/arXiv.1901.03407."},{"key":"10.1016\/j.compag.2023.107898_b0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.compeleceng.2021.107435","article-title":"Automatic quality inspection system for discrete manufacturing based on the Internet of Things","volume":"95","author":"Chen","year":"2021","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.compag.2023.107898_b0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107423","article-title":"Social density detection for suckling piglets based on convolutional neural network combined with local outlier factor algorithm","volume":"202","author":"Ding","year":"2022","journal-title":"Comput. Electron. Agric."},{"issue":"50","key":"10.1016\/j.compag.2023.107898_b0030","article-title":"Development Situation and Prospects of Intelligent Design for Agricultural Machinery. Transactions of the Chinese Society for Agricultural","volume":"9","author":"Du","year":"2019","journal-title":"Machinery"},{"issue":"4","key":"10.1016\/j.compag.2023.107898_b0035","first-page":"131","article-title":"Research on Quality Detection Methods for Automotive Transmission","volume":"169","author":"Fu","year":"2014","journal-title":"Sens. Transducers"},{"issue":"2022","key":"10.1016\/j.compag.2023.107898_b0040","doi-asserted-by":"crossref","first-page":"536","DOI":"10.1016\/j.procs.2021.12.282","article-title":"Smart manufacturing applications for inspection and quality assurance processes","volume":"198","author":"Galindo-Salcedo","year":"2022","journal-title":"Procedia Comput. Sci."},{"issue":"S1","key":"10.1016\/j.compag.2023.107898_b0045","first-page":"292","article-title":"Online Detection of Welding Quality for Screw Conveyor of Combine Harvester Based on Laser Scanning","volume":"51","author":"Gao","year":"2020","journal-title":"Trans. Chin. Soc. Agric. Mach."},{"key":"10.1016\/j.compag.2023.107898_b0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2019.105013","article-title":"An intelligent IoT-based control and traceability system to forecast and maintain water quality in freshwater fish farms","volume":"166","author":"Gao","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107898_b0055","doi-asserted-by":"crossref","DOI":"10.1016\/j.compeleceng.2021.107179","article-title":"Quick detection of product quality based on clustering hypersphere model","volume":"92","author":"Huang","year":"2021","journal-title":"Comput. Electr. Eng."},{"issue":"9","key":"10.1016\/j.compag.2023.107898_b0060","doi-asserted-by":"crossref","first-page":"218","DOI":"10.3901\/JME.2022.09.218","article-title":"Research on Comprehensive Evaluation Method of CNC Machine Tools Based on RAMS","volume":"58","author":"Huang","year":"2022","journal-title":"J. Mech. Eng."},{"issue":"8","key":"10.1016\/j.compag.2023.107898_b0065","doi-asserted-by":"crossref","first-page":"2471","DOI":"10.1007\/s10845-021-01792-1","article-title":"Quality monitoring in multistage manufacturing systems by using machine learning techniques","volume":"33","author":"Ismail","year":"2021","journal-title":"J. Intell. Manuf."},{"issue":"3","key":"10.1016\/j.compag.2023.107898_b0070","doi-asserted-by":"crossref","first-page":"264","DOI":"10.1145\/331499.331504","article-title":"Data clustering: a review","volume":"31","author":"Jain","year":"1999","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.compag.2023.107898_b0075","article-title":"Significance of Quality 4.0 towards comprehensive enhancement in manufacturing sector. Sensors","volume":"2","author":"Javaid","year":"2021","journal-title":"International"},{"key":"10.1016\/j.compag.2023.107898_b0080","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1007\/s00170-016-9696-8","article-title":"Moving towards in-line metrology: evaluation of a Laser Radar system for in-line dimensional inspection for automotive assembly systems","volume":"91","author":"Kiraci","year":"2016","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"10.1016\/j.compag.2023.107898_b0085","unstructured":"Lee, Q. 2000. How to balance a manufacturing work cell. The Institute of Industrial Engineers \u2013 IE Solutions Conference, Cleveland Ohio."},{"key":"10.1016\/j.compag.2023.107898_b0090","doi-asserted-by":"crossref","first-page":"852","DOI":"10.1016\/j.energy.2019.06.080","article-title":"An evaluation method for transient response performance of turbocharged diesel engines","volume":"182","author":"Liu","year":"2019","journal-title":"Energy"},{"issue":"5","key":"10.1016\/j.compag.2023.107898_b0095","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3901\/JME.2017.05.001","article-title":"The Statue and Difficult Problems of Research on Energy Efficiency of Manufacturing Systems","volume":"53","author":"Liu","year":"2017","journal-title":"J. Mech. Eng."},{"key":"10.1016\/j.compag.2023.107898_b0100","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.compag.2018.06.033","article-title":"Sensor nodes fault detection for agricultural wireless sensor networks based on NMF","volume":"161","author":"Lude\u00f1a-Choez","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107898_b0105","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/j.biosystemseng.2014.10.009","article-title":"New methodology for accelerating the four-post testing of tractors using wheel hub displacements","volume":"129","author":"Mattetti","year":"2015","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2023.107898_b0110","article-title":"On the application of machine learning for defect detection in L-PBF additive manufacturing","volume":"143","author":"Mohammadi","year":"2021","journal-title":"Opt. Laser Technol."},{"issue":"12","key":"10.1016\/j.compag.2023.107898_b0115","first-page":"166","article-title":"End-of-line Inspection System of Combine Harvester Manufacturing Quality Based on Digital Workshop","volume":"51","author":"Ni","year":"2020","journal-title":"Trans. Chin. Soc. Agric. Mach."},{"key":"10.1016\/j.compag.2023.107898_b0120","unstructured":"Q. Niyaz, Q., Sun, W., Javaid, A. Y., & Alam, M. 2015. A Deep Learning Approach for Network Intrusion Detection System. The 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), New York City, United States."},{"issue":"24","key":"10.1016\/j.compag.2023.107898_b0125","doi-asserted-by":"crossref","DOI":"10.3390\/s20247065","article-title":"Fault Diagnosis by Multisensor Data: A Data-Driven Approach Based on Spectral Clustering and Pairwise Constraints","volume":"20","author":"Pacella","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2023.107898_b0130","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.biosystemseng.2016.06.004","article-title":"Methodology for designing accelerated structural durability tests on agricultural machinery","volume":"149","author":"Paraforos","year":"2016","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2023.107898_b0135","article-title":"An intelligent and efficient network intrusion detection system using deep learning","volume":"99","author":"Qazi, E.-u.-H., Imran, M., Haider, N., Shoaib, M., & Razzak, I.","year":"2022","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.compag.2023.107898_b0140","article-title":"Innovative statistical information system for tracking the quality of agricultural machinery production","volume":"175","author":"Rudoy","year":"2020","journal-title":"E3S Web of Conferences"},{"issue":"6","key":"10.1016\/j.compag.2023.107898_b0145","first-page":"370","article-title":"Study on Correlation-based Feature Selection in an Automatic Quality Inspection System using Support Vector Machine (SVM)","volume":"42","author":"Song","year":"2016","journal-title":"J. Korean Inst. Indus. Eng."},{"key":"10.1016\/j.compag.2023.107898_b0150","unstructured":"Sousa, J. P., Demony, F., Pedrosa, N., Santos, T. G., Vila\u00e7a, P., & Quintino, L. 2011. Development of Automatic Systems for NDT Inspection of Wheels and Propeller Blades of Airplanes. The MATEST Conference, Split, Croatia."},{"key":"10.1016\/j.compag.2023.107898_b0155","doi-asserted-by":"crossref","first-page":"562","DOI":"10.1016\/j.jmsy.2021.10.010","article-title":"Quality detection and classification for ultrasonic welding of carbon fiber composites using time-series data and neural network methods","volume":"61","author":"Sun","year":"2021","journal-title":"J. Manuf. Syst."},{"issue":"1","key":"10.1016\/j.compag.2023.107898_b0160","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/j.mechatronics.2010.11.006","article-title":"Transmission control for power-shift agricultural tractors: Design and end-of-line automatic tuning","volume":"21","author":"Tanelli","year":"2011","journal-title":"Mechatronics"},{"key":"10.1016\/j.compag.2023.107898_b0165","article-title":"Reconstruction of Sentinel-2 derived time series using robust Gaussian mixture models \u2014 Application to the detection of anomalous crop development","volume":"198","author":"Tourneret","year":"2022","journal-title":"Comput. Electron. Agric."},{"issue":"15","key":"10.1016\/j.compag.2023.107898_b0170","article-title":"Outlier detection via multiclass deep autoencoding Gaussian mixture model for building chiller diagnosis","volume":"259","author":"Tra","year":"2022","journal-title":"Energ. Buildings"},{"issue":"2017","key":"10.1016\/j.compag.2023.107898_b0175","article-title":"Quality prediction modeling for multistage manufacturing based on classification and association rule mining","volume":"123","author":"Tzou","year":"2017","journal-title":"MATEC Web of Conferences"},{"issue":"13","key":"10.1016\/j.compag.2023.107898_b0180","doi-asserted-by":"crossref","first-page":"1444","DOI":"10.1016\/j.ifacol.2019.11.402","article-title":"Exploring the Complexity Levels of Discrete Manufacturing Processes","volume":"52","author":"Vladimir","year":"2019","journal-title":"IFAC-PapersOnLine"},{"key":"10.1016\/j.compag.2023.107898_b0185","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.110064","article-title":"A new method for fault detection of aero-engine based on isolation forest","volume":"185","author":"Wang","year":"2021","journal-title":"Measurement"},{"issue":"4","key":"10.1016\/j.compag.2023.107898_b0190","first-page":"11","article-title":"Online diagnosis system of threshing cylinder welding quality of combine harvester","volume":"31","author":"Yuan","year":"2015","journal-title":"Trans. Chin. Soc. Agric. Eng."},{"issue":"1","key":"10.1016\/j.compag.2023.107898_b0195","first-page":"203","article-title":"Theories and Applications of Auto-Encoder Neural Networks: A Literature Survey","volume":"42","author":"Yuan","year":"2019","journal-title":"Chin. J. Comp."},{"issue":"S0","key":"10.1016\/j.compag.2023.107898_b0200","first-page":"71","article-title":"Online Method for Large-scale Harvester Engine Punch Combination Position Accuracy Measurement","volume":"48","author":"Zhang","year":"2017","journal-title":"Trans. Chin. Soc. Agric. Mach."},{"key":"10.1016\/j.compag.2023.107898_b0205","unstructured":"Zong, B., Song, Q., Min, M. R., Cheng, W., Lumezanu, C., Cho, D., & Chen, H. 2018. Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection. The 6th International Conference on Learning Representations."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923002867?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923002867?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,7,27]],"date-time":"2023-07-27T05:41:02Z","timestamp":1690436462000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169923002867"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7]]},"references-count":41,"alternative-id":["S0168169923002867"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.107898","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2023,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Unsupervised anomaly analysis-based manufacturing quality test and grading method for combine harvesters","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.107898","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107898"}}