{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,4]],"date-time":"2025-04-04T09:27:27Z","timestamp":1743758847205,"version":"3.37.3"},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100012676","name":"University Nursing Program for Young Scholar with Creative Talents in Heilongjiang Province","doi-asserted-by":"publisher","award":["UNPYSCT-2020091"],"id":[{"id":"10.13039\/501100012676","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,7]]},"DOI":"10.1016\/j.compag.2023.107886","type":"journal-article","created":{"date-parts":[[2023,5,4]],"date-time":"2023-05-04T03:34:51Z","timestamp":1683171291000},"page":"107886","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["SEDLNet: An unsupervised precise lightweight extraction method for farmland areas"],"prefix":"10.1016","volume":"210","author":[{"given":"Zeguang","family":"Ji","sequence":"first","affiliation":[]},{"given":"Junshuo","family":"Wei","sequence":"additional","affiliation":[]},{"given":"Xi","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Wangshu","family":"Yuan","sequence":"additional","affiliation":[]},{"given":"Qingming","family":"Kong","sequence":"additional","affiliation":[]},{"given":"Rui","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Zhongbin","family":"Su","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2023.107886_b0005","doi-asserted-by":"crossref","unstructured":"Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H., 2019. GCNet: non-local networks meet squeeze-excitation networks and beyond. In: 2019 IEEE\/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 1971\u20131980.","DOI":"10.1109\/ICCVW.2019.00246"},{"key":"10.1016\/j.compag.2023.107886_b0010","doi-asserted-by":"crossref","unstructured":"Caron, M., Bojanowski, P., Joulin, A., Douze, M., 2018. Deep clustering for unsupervised learning of visual features. In: European Conference on Computer Vision.","DOI":"10.1007\/978-3-030-01264-9_9"},{"key":"10.1016\/j.compag.2023.107886_b0015","doi-asserted-by":"crossref","unstructured":"Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C., 2017. Deep adaptive image clustering. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5880\u20135888.","DOI":"10.1109\/ICCV.2017.626"},{"key":"10.1016\/j.compag.2023.107886_b0020","article-title":"Deep discriminative clustering analysis","volume":"abs\/1905.01681","author":"Chang","year":"2019","journal-title":"ArXiv."},{"key":"10.1016\/j.compag.2023.107886_b0025","doi-asserted-by":"crossref","unstructured":"Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: European Conference on Computer Vision, 2018.","DOI":"10.1007\/978-3-030-01234-2_49"},{"key":"10.1016\/j.compag.2023.107886_b0030","article-title":"Unsupervised learning of foreground object segmentation","volume":"1\u201324","author":"Croitoru","year":"2018","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.compag.2023.107886_b0035","doi-asserted-by":"crossref","DOI":"10.3390\/agronomy10050633","article-title":"A practical application of unsupervised machine learning for analyzing plant image data collected using unmanned aircraft systems","volume":"10","author":"Davis","year":"2020","journal-title":"Agronomy"},{"key":"10.1016\/j.compag.2023.107886_b0040","doi-asserted-by":"crossref","unstructured":"Enabling the Business of Agriculture 2019, The World Bank, 2019. Doi:10.1596\/978-1-4648-1387-0.","DOI":"10.1596\/978-1-4648-1387-0"},{"key":"10.1016\/j.compag.2023.107886_b0045","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3329784","article-title":"Understanding deep learning techniques for image segmentation","volume":"52","author":"Ghosh","year":"2019","journal-title":"ACM Computing Surveys (CSUR)."},{"key":"10.1016\/j.compag.2023.107886_b0050","unstructured":"Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks. In: International Conference on Artificial Intelligence and Statistics."},{"key":"10.1016\/j.compag.2023.107886_b0055","unstructured":"Greff, K., Srivastava, R.K., Schmidhuber, J., 2015. Binding via reconstruction clustering, ArXiv. abs\/1511.06418."},{"key":"10.1016\/j.compag.2023.107886_b0060","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G., 2017. Squeeze-and-Excitation Networks. In: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132\u20137141.","DOI":"10.1109\/CVPR.2018.00745"},{"key":"10.1016\/j.compag.2023.107886_b0065","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112757","article-title":"Utilizing unsupervised learning, multi-view imaging, and CNN-based attention facilitates cost-effective wetland mapping","volume":"267","author":"Hu","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2023.107886_b0070","doi-asserted-by":"crossref","unstructured":"Ji, X., Vedaldi, A., Henriques, J.F., 2019. Invariant information clustering for unsupervised image classification and segmentation. In: 2019 IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 9864\u20139873.","DOI":"10.1109\/ICCV.2019.00996"},{"key":"10.1016\/j.compag.2023.107886_b0075","doi-asserted-by":"crossref","unstructured":"Kanezaki, A., 2018. Unsupervised image segmentation by backpropagation. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1543\u20131547.","DOI":"10.1109\/ICASSP.2018.8462533"},{"key":"10.1016\/j.compag.2023.107886_b0080","doi-asserted-by":"crossref","first-page":"8055","DOI":"10.1109\/TIP.2020.3011269","article-title":"Unsupervised learning of image segmentation based on differentiable feature clustering","volume":"29","author":"Kim","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compag.2023.107886_b0085","doi-asserted-by":"crossref","unstructured":"Le, Q.V., 2013. Building high-level features using large scale unsupervised learning. In: 2013 IEEE International conference on acoustics, speech and signal processing, pp. 8595\u20138598. Doi:10.1109\/ICASSP.2013.6639343.","DOI":"10.1109\/ICASSP.2013.6639343"},{"key":"10.1016\/j.compag.2023.107886_b0090","article-title":"Attention enhanced U-Net for building extraction from farmland based on Google and WorldView-2 Remote Sensing Images","volume":"13","author":"Li","year":"2021","journal-title":"Remote Sens. (Basel)"},{"key":"10.1016\/j.compag.2023.107886_b0095","doi-asserted-by":"crossref","unstructured":"Lin, T.-Y., Maire, M., Belongie, S.J., Hays, J., Perona, P., Ramanan, D., Doll\u00e1r, P., Zitnick, C.L., 2014. Microsoft COCO: Common Objects in Context. In: European Conference on Computer Vision.","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"10.1016\/j.compag.2023.107886_b0100","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","article-title":"Distinctive Image Features from Scale-Invariant Keypoints","volume":"60","author":"Lowe","year":"2004","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.compag.2023.107886_b0105","doi-asserted-by":"crossref","first-page":"27067","DOI":"10.1007\/s11356-021-12552-2","article-title":"Optimal segmentation scale selection and evaluation of cultivated land objects based on high-resolution remote sensing images with spectral and texture features","volume":"28","author":"Lu","year":"2021","journal-title":"Environ. Sci. Pollut. Res."},{"key":"10.1016\/j.compag.2023.107886_b0110","doi-asserted-by":"crossref","DOI":"10.1016\/j.jclepro.2020.123548","article-title":"Study on the optimization of staple crops spatial distribution in China under the influence of natural disasters","volume":"278","author":"Pei","year":"2021","journal-title":"J. Clean. Prod."},{"key":"10.1016\/j.compag.2023.107886_b0115","doi-asserted-by":"crossref","first-page":"2022","DOI":"10.1109\/TPAMI.2012.257","article-title":"USAC: a universal framework for random sample consensus","volume":"35","author":"Raguram","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compag.2023.107886_b0120","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.biosystemseng.2018.09.014","article-title":"Rice yield estimation based on K-means clustering with graph-cut segmentation using low-altitude UAV images","volume":"177","author":"Reza","year":"2019","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2023.107886_b0125","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., Brox, T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation, ArXiv. abs\/1505.04597.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"10.1016\/j.compag.2023.107886_b0130","unstructured":"Shelhamer, E., Long, J., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (2014) 3431\u20133440."},{"key":"10.1016\/j.compag.2023.107886_b0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2019.104962","article-title":"Segmentation of tomato leaf images based on adaptive clustering number of K-means algorithm","volume":"165","author":"Tian","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107886_b0140","doi-asserted-by":"crossref","first-page":"929","DOI":"10.1109\/TPAMI.2007.1046","article-title":"Toward objective evaluation of image segmentation algorithms","volume":"29","author":"Unnikrishnan","year":"2007","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compag.2023.107886_b0145","unstructured":"van den Oord, A., Kalchbrenner, N., Espeholt, L., Kavukcuoglu, K., Vinyals, O., Graves, A.2016. Conditional Image Generation with PixelCNN Decoders, ArXiv. abs\/1606.05328."},{"key":"10.1016\/j.compag.2023.107886_b0150","article-title":"Pixel recurrent neural networks","volume":"abs\/1601.06759","author":"van den Oord","year":"2016","journal-title":"ArXiv."},{"key":"10.1016\/j.compag.2023.107886_b0155","unstructured":"Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is All you Need, ArXiv. abs\/1706.03762 (2017)."},{"key":"10.1016\/j.compag.2023.107886_b0160","article-title":"Weakly supervised deep learning for segmentation of remote sensing imagery","volume":"12","author":"Wang","year":"2020","journal-title":"Remote Sens. (Basel)"},{"key":"10.1016\/j.compag.2023.107886_b0165","doi-asserted-by":"crossref","unstructured":"Wang, X., Girshick, R.B., Gupta, A.K., He, K., 2018. Non-local Neural Networks. In: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7794\u20137803.","DOI":"10.1109\/CVPR.2018.00813"},{"key":"10.1016\/j.compag.2023.107886_b0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.jenvman.2021.113130","article-title":"Exploring the optimal crop planting structure to balance water saving, food security and incomes under the spatiotemporal heterogeneity of the agricultural climate","volume":"295","author":"Wang","year":"2021","journal-title":"J. Environ. Manage."},{"key":"10.1016\/j.compag.2023.107886_b0175","series-title":"Computer Vision \u2013 ECCV 2018","first-page":"3","article-title":"CBAM: Convolutional Block Attention Module","author":"Woo","year":"2018"},{"key":"10.1016\/j.compag.2023.107886_b0180","first-page":"103","article-title":"Classification method of cultivated land based on UAV visible light remote sensing","volume":"12","author":"Xu","year":"2019","journal-title":"Int. J. Agric. Biol. Eng."},{"key":"10.1016\/j.compag.2023.107886_b0185","article-title":"Building extraction in very high resolution remote sensing imagery using deep learning and guided filters","volume":"10","author":"Xu","year":"2018","journal-title":"Remote Sens. (Basel)"},{"key":"10.1016\/j.compag.2023.107886_b0190","article-title":"An efficient building extraction method from high spatial resolution remote sensing images based on improved mask R-CNN","volume":"20","author":"Zhang","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2023.107886_b0195","doi-asserted-by":"crossref","unstructured":"Zhao, Z., Liu, Y., Zhang, G., Tang, L., Hu, X.-N., 2021. The Winning Solution to the iFLYTEK Challenge 2021 Cultivated land extraction from high-resolution remote sensing images. In: 2022 14th International Conference on Advanced Computational Intelligence (ICACI), pp. 376\u2013380.","DOI":"10.1109\/ICACI55529.2022.9837765"},{"key":"10.1016\/j.compag.2023.107886_b0200","doi-asserted-by":"crossref","unstructured":"Zhou, B., Khosla, A., Lapedriza, \u00c0., Oliva, A., Torralba, A., 2016. Learning deep features for discriminative localization. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921\u20132929.","DOI":"10.1109\/CVPR.2016.319"},{"key":"10.1016\/j.compag.2023.107886_b0205","unstructured":"Zhu, J., Mao, J., Yuille, A.L., 2014. Learning from weakly supervised data by the expectation loss SVM (e-SVM) algorithm. In: Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, K.Q. Weinberger (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc., 2014. https:\/\/proceedings.neurips.cc\/paper\/2014\/file\/3a066bda8c96b9478bb0512f0a43028c-Paper.pdf."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923002740?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923002740?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,7,27]],"date-time":"2023-07-27T05:40:19Z","timestamp":1690436419000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169923002740"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7]]},"references-count":41,"alternative-id":["S0168169923002740"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.107886","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2023,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"SEDLNet: An unsupervised precise lightweight extraction method for farmland areas","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.107886","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"107886"}}