{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T17:00:38Z","timestamp":1726851638516},"reference-count":20,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,26]],"date-time":"2023-04-26T00:00:00Z","timestamp":1682467200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,7]]},"DOI":"10.1016\/j.compag.2023.107874","type":"journal-article","created":{"date-parts":[[2023,5,5]],"date-time":"2023-05-05T17:53:29Z","timestamp":1683309209000},"page":"107874","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Evaluation of UAV multispectral cameras for yield and biomass prediction in wheat under different sun elevation angles and phenological stages"],"prefix":"10.1016","volume":"210","author":[{"given":"Sahameh","family":"Shafiee","sequence":"first","affiliation":[]},{"given":"Tomasz","family":"Mroz","sequence":"additional","affiliation":[]},{"given":"Ingunn","family":"Burud","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8594-8794","authenticated-orcid":false,"given":"Morten","family":"Lillemo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2023.107874_b0005","doi-asserted-by":"crossref","first-page":"2392","DOI":"10.3390\/rs12152392","article-title":"Use of UAS multispectral imagery at different physiological stages for yield prediction and input resource optimization in corn","volume":"12","author":"Barzin","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2023.107874_b0010","doi-asserted-by":"crossref","unstructured":"Burud, I., Lange, G., Lillemo, M., Bleken, E., Grimstad, L., Johan From, P., 2017. Exploring robots and UAVs as phenotyping tools in plant breeding. IFAC-PapersOnLine,50(1),11479\u201311484.","DOI":"10.1016\/j.ifacol.2017.08.1591"},{"key":"10.1016\/j.compag.2023.107874_b0020","doi-asserted-by":"crossref","DOI":"10.3390\/rs14030449","article-title":"Spectral comparison of UAV-based hyper and multispectral cameras for precision viticulture","volume":"14","author":"Di Gennaro","year":"2022","journal-title":"Remote Sens."},{"issue":"February","key":"10.1016\/j.compag.2023.107874_b0025","first-page":"1","article-title":"Remote estimation of rice yield with unmanned aerial vehicle (uav) data and spectral mixture analysis","volume":"10","author":"Duan","year":"2019","journal-title":"Front. Plant Sci."},{"key":"10.1016\/j.compag.2023.107874_b0030","doi-asserted-by":"crossref","DOI":"10.3390\/app9245314","article-title":"Geometric and radiometric consistency of parrot sequoia multispectral imagery for precision agriculture applications","volume":"9","author":"Franzini","year":"2019","journal-title":"Appl. Sci."},{"key":"10.1016\/j.compag.2023.107874_b0035","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.compag.2013.10.010","article-title":"Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements","volume":"100","author":"Fu","year":"2014","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107874_b0040","doi-asserted-by":"crossref","first-page":"1588","DOI":"10.3390\/rs5041588","article-title":"Estimating crop coefficients using remote sensing-based vegetation index","volume":"5","author":"Kamble","year":"2013","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2023.107874_b0045","doi-asserted-by":"crossref","DOI":"10.3389\/fpls.2017.01114","article-title":"Assessment of vegetation indices derived by UAV imagery for durum wheat phenotyping under a water limited and heat stressed mediterranean environment","volume":"8","author":"Kyratzis","year":"2017","journal-title":"Front. Plant Sci."},{"key":"10.1016\/j.compag.2023.107874_b0050","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/rs12162542","article-title":"Experimental evaluation and consistency comparison of UAV multispectral minisensors","volume":"12","author":"Lu","year":"2020","journal-title":"Remote Sens."},{"issue":"1","key":"10.1016\/j.compag.2023.107874_b0055","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13007-019-0402-3","article-title":"Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system","volume":"15","author":"Lu","year":"2019","journal-title":"Plant Methods"},{"key":"10.1016\/j.compag.2023.107874_b0060","doi-asserted-by":"crossref","unstructured":"Maimaitijiang, M., Sagan, V., Sidike, P., Hartling, S., Esposito, F., Fritschi, F.B., 2020. Soybean yield prediction from UAV using multimodal data fusion and deep learning. Remote Sens. Environ., 237 (May 2019), 111599. 10.1016\/j.rse.2019.111599.","DOI":"10.1016\/j.rse.2019.111599"},{"key":"10.1016\/j.compag.2023.107874_b0070","doi-asserted-by":"crossref","first-page":"997","DOI":"10.1002\/csc2.20714","article-title":"Historical grain yield genetic gains in Norwegian spring wheat under contrasting fertilization regimes","volume":"62","author":"Mr\u00f3z","year":"2022","journal-title":"Crop Science"},{"key":"10.1016\/j.compag.2023.107874_b0075","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106000","article-title":"Which multispectral indices robustly measure canopy nitrogen across seasons: Lessons from an irrigated pasture crop","volume":"182","author":"Patel","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107874_b9000","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.rse.2015.12.024","article-title":"Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity","volume":"185","author":"Roy","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2023.107874_b0085","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106036","article-title":"Sequential forward selection and support vector regression in comparison to LASSO regression for spring wheat yield prediction based on UAV imagery","author":"Shafiee","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107874_b9005","doi-asserted-by":"crossref","first-page":"55","DOI":"10.3390\/drones3030055","article-title":"Illumination geometry and flying height influence surface reflectance and ndvi derived from multispectral UAS imagery","volume":"2019","author":"Stow","year":"2019","journal-title":"Drones"},{"key":"10.1016\/j.compag.2023.107874_b0090","doi-asserted-by":"crossref","DOI":"10.3390\/drones5030080","article-title":"Effect of the solar zenith angles at different latitudes on estimated crop vegetation indices","volume":"5","author":"Valencia-Ortiz","year":"2021","journal-title":"Drones"},{"key":"10.1016\/j.compag.2023.107874_b0095","doi-asserted-by":"crossref","first-page":"2091","DOI":"10.1002\/agj2.20621","article-title":"Comparisons of sensors to predict spring wheat grain yield and protein content","volume":"113","author":"Veverka","year":"2021","journal-title":"Agron. J."},{"key":"10.1016\/j.compag.2023.107874_b0100","doi-asserted-by":"crossref","first-page":"1353691","DOI":"10.1155\/2017\/1353691","article-title":"Significant remote sensing vegetation indices: a review of developments and applications","volume":"2017","author":"Xue","year":"2017","journal-title":"J. Sensors"},{"key":"10.1016\/j.compag.2023.107874_b0110","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1016\/j.isprsjprs.2019.02.022","article-title":"Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices","volume":"150","author":"Yue","year":"2019","journal-title":"ISPRS J. Photogramm. Remote Sens."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923002624?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923002624?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,7,27]],"date-time":"2023-07-27T05:39:39Z","timestamp":1690436379000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169923002624"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7]]},"references-count":20,"alternative-id":["S0168169923002624"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.107874","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2023,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Evaluation of UAV multispectral cameras for yield and biomass prediction in wheat under different sun elevation angles and phenological stages","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.107874","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"107874"}}