{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T16:48:55Z","timestamp":1726418935242},"reference-count":64,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,7]]},"DOI":"10.1016\/j.compag.2023.107868","type":"journal-article","created":{"date-parts":[[2023,5,4]],"date-time":"2023-05-04T17:59:52Z","timestamp":1683223192000},"page":"107868","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Deep spatial and temporal graph convolutional network for rice planthopper population dynamic forecasting"],"prefix":"10.1016","volume":"210","author":[{"given":"Hongguo","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Binbin","family":"He","sequence":"additional","affiliation":[]},{"given":"Jin","family":"Xing","sequence":"additional","affiliation":[]},{"given":"Minghong","family":"Lu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.compag.2023.107868_b0005","doi-asserted-by":"crossref","first-page":"e91678","DOI":"10.1371\/journal.pone.0091678","article-title":"Will climate change affect outbreak patterns of planthoppers in Bangladesh?","volume":"9","author":"Ali","year":"2014","journal-title":"PLoS ONE"},{"key":"10.1016\/j.compag.2023.107868_b0010","unstructured":"Bahdanau, D., Cho, K.H., Bengio, Y., 2015. Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA."},{"issue":"1","key":"10.1016\/j.compag.2023.107868_b0015","doi-asserted-by":"crossref","first-page":"99","DOI":"10.3390\/rs10010099","article-title":"Remote sensing and cropping practices: a review","volume":"10","author":"B\u00e9gu\u00e9","year":"2018","journal-title":"Remote Sens."},{"issue":"7","key":"10.1016\/j.compag.2023.107868_b0020","doi-asserted-by":"crossref","first-page":"1046","DOI":"10.1175\/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2","article-title":"The computation of equivalent potential temperature","volume":"108","author":"Bolton","year":"1980","journal-title":"Mon. Weather Rev."},{"issue":"1","key":"10.1016\/j.compag.2023.107868_b0025","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1093\/jisesa\/iev034","article-title":"Development of temporal modeling for forecasting and prediction of the incidence of Lychee, Tessaratoma papillosa (Hemiptera: Tessaratomidae), using time-series (ARIMA) analysis","volume":"15","author":"Boopathi","year":"2015","journal-title":"J. Insect Sci."},{"issue":"18","key":"10.1016\/j.compag.2023.107868_b0030","doi-asserted-by":"crossref","first-page":"4643","DOI":"10.1080\/01431160802632249","article-title":"Multi-year monitoring of rice crop phenology through time series analysis of MODIS images","volume":"30","author":"Boschetti","year":"2009","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2023.107868_b0035","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1016\/j.rse.2017.03.029","article-title":"PhenoRice: a method for automatic extraction of spatio-temporal information on rice crops using satellite data time series","volume":"194","author":"Boschetti","year":"2017","journal-title":"Remote Sens. Environ."},{"issue":"1","key":"10.1016\/j.compag.2023.107868_b0040","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.aspen.2011.09.004","article-title":"Resurrecting the ghost of green revolutions past: the brown planthopper as a recurring threat to high-yielding rice production in tropical Asia","volume":"15","author":"Bottrell","year":"2012","journal-title":"J. Asia-Pac. Entomol."},{"key":"10.1016\/j.compag.2023.107868_b0045","unstructured":"Bruna, J., Zaremba, W., Szlam, A., LeCun, Y., 2014. Spectral networks and locally connected networks on graphs. In: 2nd International Conference on Learning Representations (ICLR 2014), Banff, Canada."},{"key":"10.1016\/j.compag.2023.107868_b0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105612","article-title":"Occurrence prediction of cotton pests and diseases by bidirectional long short-term memory networks with climate and atmosphere circulation","volume":"176","author":"Chen","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107868_b0055","series-title":"Rice Planthoppers: Ecology, Management, Socio Economics and Policy","first-page":"1","article-title":"Rice planthoppers in the past half century in China","author":"Cheng","year":"2015"},{"key":"10.1016\/j.compag.2023.107868_b0060","doi-asserted-by":"crossref","unstructured":"Cho, K., van Merrienboer, B., Bahdanau, D., Bengio, Y., 2014. On the Properties of Neural Machine Translation: Encoder-Decoder Approaches. In: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 103\u2013111. doi: 10.3115\/v1\/W14-4012.","DOI":"10.3115\/v1\/W14-4012"},{"key":"10.1016\/j.compag.2023.107868_b0065","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112632","article-title":"Long time-series NDVI reconstruction in cloud-prone regions via spatio-temporal tensor completion","volume":"264","author":"Chu","year":"2021","journal-title":"Remote Sens. Environ."},{"issue":"2","key":"10.1016\/j.compag.2023.107868_b0070","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1039\/C8SC04228D","article-title":"A graph-convolutional neural network model for the prediction of chemical reactivity","volume":"10","author":"Coley","year":"2019","journal-title":"Chem. Sci."},{"key":"10.1016\/j.compag.2023.107868_b0075","unstructured":"Defferrard, M., Bresson, X., Vandergheynst, P., 2016. Convolutional neural networks on graphs with fast localized spectral filtering. In: Proceedings of 30th International Conference on Neural Information Processing (NIPS 16), Barcelona, Spain. Curran Associates Inc., Red Hook, NY, USA, pp. 3844\u20133852. doi: 10.5555\/3157382.3157527."},{"key":"10.1016\/j.compag.2023.107868_b0080","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107162","article-title":"Automated detection and analysis of piglet suckling behaviour using high-accuracy amodal instance segmentation","volume":"199","author":"Gan","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107868_b0085","unstructured":"Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin Yann N., 2017. Convolutional sequence to sequence learning. In: Proceedings of the 34th International Conference on Machine Learning (ICML 17), Sydney, Australia. PMLR, pp. 1243\u20131252."},{"key":"10.1016\/j.compag.2023.107868_b0090","doi-asserted-by":"crossref","unstructured":"Guo, S., Lin, Y., Feng, N., Song, C., Wan, H., 2020b. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19), Hawii, USA. AAAI Press, Palo Alto, CA, USA, pp. 922\u2013929. doi: 10.1609\/aaai.v33i01.3301922.","DOI":"10.1609\/aaai.v33i01.3301922"},{"issue":"2","key":"10.1016\/j.compag.2023.107868_b0095","doi-asserted-by":"crossref","first-page":"1009","DOI":"10.1109\/TITS.2020.3019497","article-title":"Dynamic graph convolution network for traffic forecasting based on latent network of Laplace matrix estimation","volume":"23","author":"Guo","year":"2020","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"issue":"2","key":"10.1016\/j.compag.2023.107868_b0100","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.acha.2010.04.005","article-title":"Wavelets on graphs via spectral graph theory","volume":"30","author":"Hammond","year":"2011","journal-title":"Appl. Comput. Harmon. Anal."},{"issue":"8","key":"10.1016\/j.compag.2023.107868_b0105","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"issue":"2","key":"10.1016\/j.compag.2023.107868_b0110","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1017\/S0007485310000313","article-title":"Rice planting systems, global warming and outbreaks of Nilaparvata lugens (St\u00e5l)","volume":"101","author":"Hu","year":"2011","journal-title":"Bull. Entomol. Res."},{"issue":"2","key":"10.1016\/j.compag.2023.107868_b0115","doi-asserted-by":"crossref","first-page":"e88973","DOI":"10.1371\/journal.pone.0088973","article-title":"Outbreaks of the brown planthopper Nilaparvata lugens (St\u00e5l) in the Yangtze River Delta: immigration or local reproduction?","volume":"9","author":"Hu","year":"2014","journal-title":"PLoS ONE"},{"key":"10.1016\/j.compag.2023.107868_b0120","unstructured":"Huang, C., Liu, W., Jiang, Y., Zeng, J., Lu, M., Liu, J., 2016. Research on web-based monitoring and warning system for crop diseases and pests. J. Chin. Agric. Mech. 37(5), 196\u2013199, 205 (in Chinese)."},{"issue":"5","key":"10.1016\/j.compag.2023.107868_b0125","doi-asserted-by":"crossref","first-page":"466","DOI":"10.1007\/s11427-014-4768-1","article-title":"Impact of insect-resistant GM rice on pesticide use and farmers' health in China","volume":"58","author":"Huang","year":"2015","journal-title":"Sci. China: Life Sci."},{"issue":"2","key":"10.1016\/j.compag.2023.107868_b0130","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1007\/BF02513607","article-title":"Relative humidity as an environmental factor determining the microhabitat of the nymphs of the rice brown planthopper, Nilaparvata lugens (St\u00e5l) (Homoptera: Delphacidae)","volume":"35","author":"Isichaikul","year":"1993","journal-title":"Rese. Popul. Ecol."},{"key":"10.1016\/j.compag.2023.107868_b0135","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105450","article-title":"CNN feature based graph convolutional network for weed and crop recognition in smart farming","volume":"174","author":"Jiang","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107868_b0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107121","article-title":"Forecasting weekly reference evapotranspiration using Auto Encoder Decoder Bidirectional LSTM model hybridized with a Boruta-CatBoost input optimizer","volume":"198","author":"Karbasi","year":"2022","journal-title":"Comput. Electron. Agric."},{"issue":"6","key":"10.1016\/j.compag.2023.107868_b0145","doi-asserted-by":"crossref","first-page":"2423","DOI":"10.1002\/ps.6873","article-title":"Time-series analysis of population dynamics of the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae), using an ARIMAX model","volume":"78","author":"Kawakita","year":"2022","journal-title":"Pest. Manage. Sci."},{"issue":"1","key":"10.1016\/j.compag.2023.107868_b0150","first-page":"357","article-title":"Advantages of artificial neural network over regression method in prediction of pest incidence in rice crop","volume":"14","author":"Kumar","year":"2018","journal-title":"Int. J. Agric. Stat. Sci."},{"issue":"2","key":"10.1016\/j.compag.2023.107868_b0155","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1175\/BAMS-86-2-225","article-title":"The relationship between relative humidity and the dewpoint temperature in moist air: a simple conversion and applications","volume":"86","author":"Lawrence","year":"2005","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"10.1016\/j.compag.2023.107868_b0160","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106816","article-title":"Improving soil moisture prediction using a novel encoder-decoder model with residual learning","volume":"195","author":"Li","year":"2022","journal-title":"Comput. Electron. Agric."},{"issue":"5","key":"10.1016\/j.compag.2023.107868_b0165","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1111\/1748-5967.12227","article-title":"Meteorological driven factors of population growth in brown planthopper, Nilaparvata lugens St\u00e5l (Hemiptera: Delphacidae), in rice paddies","volume":"47","author":"Li","year":"2017","journal-title":"Entomol. Res."},{"issue":"5","key":"10.1016\/j.compag.2023.107868_b0170","first-page":"1","article-title":"Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years","volume":"42","author":"Liu","year":"2016","journal-title":"Plant Protection"},{"issue":"10","key":"10.1016\/j.compag.2023.107868_b0175","doi-asserted-by":"crossref","first-page":"e01967","DOI":"10.1002\/ecs2.1967","article-title":"Swarms of brown planthopper migrate into the lower Yangtze River Valley under strong western Pacific subtropical highs","volume":"8","author":"Lu","year":"2017","journal-title":"Ecosphere"},{"key":"10.1016\/j.compag.2023.107868_b0180","doi-asserted-by":"crossref","unstructured":"Luong, T., Pham, H., Manning, C.D., 2015. Effective approaches to attention-based neural machine translation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), Lisbon, Portugal. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 1412\u20131421. doi: 10.18653\/v1\/D15-1166.","DOI":"10.18653\/v1\/D15-1166"},{"issue":"6","key":"10.1016\/j.compag.2023.107868_b0185","doi-asserted-by":"crossref","first-page":"775","DOI":"10.1016\/j.asr.2009.11.013","article-title":"Study on extraction of crop information using time-series MODIS data in the Chao Phraya Basin of Thailand","volume":"45","author":"Lv","year":"2010","journal-title":"Adv. Space Res."},{"issue":"1","key":"10.1016\/j.compag.2023.107868_b0190","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1007\/BF02514967","article-title":"Population dynamics of the whitebacked planthopper, Sogatella furcifera (Hemiptera: Delphacidae) with special reference to the relationship between its population growth and the growth stage of rice plants","volume":"38","author":"Matsumura","year":"1996","journal-title":"Popul. Ecol."},{"key":"10.1016\/j.compag.2023.107868_b0195","doi-asserted-by":"crossref","unstructured":"Medar, R., Rajpurohit, V.S., Rashmi, B., 2017. Impact of training and testing data splits on accuracy of time series forecasting in machine learning. In: 2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA), PUNE, India. IEEE, Piscataway, NJ, pp. 1\u20136. doi: 10.1109\/ICCUBEA.2017.8463779.","DOI":"10.1109\/ICCUBEA.2017.8463779"},{"issue":"9","key":"10.1016\/j.compag.2023.107868_b0200","doi-asserted-by":"crossref","first-page":"4349","DOI":"10.5194\/essd-13-4349-2021","article-title":"ERA5-Land: a state-of-the-art global reanalysis dataset for land applications","volume":"13","author":"Mu\u00f1oz-Sabater","year":"2021","journal-title":"Earth Syst. Sci. Data"},{"issue":"3","key":"10.1016\/j.compag.2023.107868_b0205","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1093\/jisesa\/ieac019","article-title":"Development of temporal model for forecasting of Helicoverpa armigera (Noctuidae: Lepidopetra) using Arima and artificial neural networks","volume":"22","author":"Narava","year":"2022","journal-title":"J. Insect Sci."},{"key":"10.1016\/j.compag.2023.107868_b0210","doi-asserted-by":"crossref","first-page":"309","DOI":"10.3389\/fmicb.2013.00309","article-title":"Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia","volume":"4","author":"Otuka","year":"2013","journal-title":"Front. Microbiol."},{"issue":"1","key":"10.1016\/j.compag.2023.107868_b0215","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1007\/s13355-013-0229-8","article-title":"Occurrence and short-distance migration of Nilaparvata lugens (Hemiptera: Delphacidae) in the Vietnamese Mekong Delta","volume":"49","author":"Otuka","year":"2013","journal-title":"Appl. Entomol. Zool."},{"key":"10.1016\/j.compag.2023.107868_b0220","series-title":"Integrated pest management: Principles and practice","first-page":"41","article-title":"Pest monitoring and forecasting","author":"Prasad","year":"2012"},{"issue":"1","key":"10.1016\/j.compag.2023.107868_b0225","doi-asserted-by":"crossref","first-page":"126","DOI":"10.54386\/jam.v16i1.1497","article-title":"Weather-based brown planthopper prediction model at Mandya, Karnataka","volume":"16","author":"Prasannakumar","year":"2014","journal-title":"J. Agrometeorol."},{"key":"10.1016\/j.compag.2023.107868_b0230","doi-asserted-by":"crossref","unstructured":"Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.W., 2017. A dual-stage attention-based recurrent meural metwork for time series prediction. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia. AAAI Press, Palo Alto, CA, USA, pp. 2627\u20132633. doi: 10.24963\/ijcai.2017\/366.","DOI":"10.24963\/ijcai.2017\/366"},{"key":"10.1016\/j.compag.2023.107868_b0235","doi-asserted-by":"crossref","first-page":"581","DOI":"10.1016\/j.scitotenv.2017.03.221","article-title":"Automatic and adaptive paddy rice mapping using Landsat images: case study in Songnen Plain in Northeast China","volume":"598","author":"Qiu","year":"2017","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.compag.2023.107868_b0240","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.biocontrol.2014.01.006","article-title":"Mitigating the effects of insecticides on arthropod biological control at field and landscape scales","volume":"75","author":"Roubos","year":"2014","journal-title":"Biol. Control"},{"issue":"11","key":"10.1016\/j.compag.2023.107868_b0245","doi-asserted-by":"crossref","first-page":"eaau4996","DOI":"10.1126\/sciadv.aau4996","article-title":"Detecting and quantifying causal associations in large nonlinear time series datasets","volume":"5","author":"Runge","year":"2019","journal-title":"Sci. Adv."},{"key":"10.1016\/j.compag.2023.107868_b0250","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106685","article-title":"Weather-based rice blast disease forecasting","volume":"193","author":"Sriwanna","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107868_b0255","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/j.future.2020.11.016","article-title":"Graph convolutional networks for graphs containing missing features","volume":"117","author":"Taguchi","year":"2021","journal-title":"Future Gener. Comput. Syst."},{"year":"2009","series-title":"Rules of Investigation and Forecast for the Rice Planthopper (Nilaparvata Lugens Stal and Sogatalla Furcifera Horvath)","key":"10.1016\/j.compag.2023.107868_b0260"},{"issue":"2","key":"10.1016\/j.compag.2023.107868_b0265","doi-asserted-by":"crossref","first-page":"183","DOI":"10.3923\/je.2011.183.190","article-title":"Population fluctuations of brown plant hopper Nilaparvata lugens St\u00e5l. and white backed plant hopper Sogatella furcifera Horv\u00e1th on rice","volume":"8","author":"Win","year":"2011","journal-title":"Journal of Entomology"},{"issue":"4","key":"10.1016\/j.compag.2023.107868_b0270","doi-asserted-by":"crossref","first-page":"3907","DOI":"10.3390\/rs70403907","article-title":"Global crop monitoring: a satellite-based hierarchical approach","volume":"7","author":"Wu","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2023.107868_b0275","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.agrformet.2018.11.001","article-title":"Migration patterns and winter population dynamics of rice planthoppers in Indochina: New perspectives from field surveys and atmospheric trajectories","volume":"265","author":"Wu","year":"2019","journal-title":"Agric. For. Meteorol."},{"issue":"1","key":"10.1016\/j.compag.2023.107868_b0280","doi-asserted-by":"crossref","first-page":"4586","DOI":"10.1038\/s41598-018-22906-5","article-title":"The evolution of insecticide resistance in the brown planthopper (Nilaparvata lugens St\u00e5l) of China in the period 2012\u20132016","volume":"8","author":"Wu","year":"2018","journal-title":"Sci. Rep."},{"issue":"4","key":"10.1016\/j.compag.2023.107868_b0285","doi-asserted-by":"crossref","first-page":"480","DOI":"10.1016\/j.rse.2004.12.009","article-title":"Mapping paddy rice agriculture in southern China using multi-temporal MODIS images","volume":"95","author":"Xiao","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2023.107868_b0290","unstructured":"Xing, J., Sieber, R.E., 2021. Integrating XAI and GeoAI. In: GIScience 2021, Poznan, Poland."},{"issue":"6","key":"10.1016\/j.compag.2023.107868_b0295","doi-asserted-by":"crossref","first-page":"1737","DOI":"10.1603\/EN10018","article-title":"Population forecasting model of Nilaparvata lugens and Sogatella furcifera (Homoptera: Delphacidae) based on Markov chain theory","volume":"39","author":"Yan","year":"2010","journal-title":"Environ. Entomol."},{"issue":"2","key":"10.1016\/j.compag.2023.107868_b0300","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.compag.2009.06.003","article-title":"A prediction model for population occurrence of paddy stem borer (Scirpophaga incertulas), based on Back Propagation Artificial Neural Network and Principal Components Analysis","volume":"68","author":"Yang","year":"2009","journal-title":"Comput. Electron. Agric."},{"issue":"3","key":"10.1016\/j.compag.2023.107868_b0305","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1016\/S0034-4257(02)00135-9","article-title":"Monitoring vegetation phenology using MODIS","volume":"84","author":"Zhang","year":"2003","journal-title":"Remote Sens. Environ."},{"issue":"15","key":"10.1016\/j.compag.2023.107868_b0310","doi-asserted-by":"crossref","first-page":"3721","DOI":"10.3390\/rs14153721","article-title":"Mapping paddy rice in complex landscapes with Landsat time series data and superpixel-based deep learning method","volume":"14","author":"Zhang","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2023.107868_b0315","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106750","article-title":"Spatial and temporal patterns of rice planthopper populations in South and Southwest China","volume":"194","author":"Zhang","year":"2022","journal-title":"Comput. Electron. Agric."},{"issue":"1","key":"10.1016\/j.compag.2023.107868_b0320","first-page":"144","article-title":"Occurrence and damage analysis of a new rice dwarf disease caused by Southern rice black-streaked dwarf virus","volume":"36","author":"Zhou","year":"2010","journal-title":"Plant Protection"}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923002569?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923002569?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,7,27]],"date-time":"2023-07-27T01:37:46Z","timestamp":1690421866000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169923002569"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7]]},"references-count":64,"alternative-id":["S0168169923002569"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.107868","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2023,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Deep spatial and temporal graph convolutional network for rice planthopper population dynamic forecasting","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.107868","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107868"}}