{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,19]],"date-time":"2024-10-19T04:17:45Z","timestamp":1729311465431,"version":"3.27.0"},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,6,1]],"date-time":"2023-06-01T00:00:00Z","timestamp":1685577600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,6]]},"DOI":"10.1016\/j.compag.2023.107852","type":"journal-article","created":{"date-parts":[[2023,4,19]],"date-time":"2023-04-19T15:17:32Z","timestamp":1681917452000},"page":"107852","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Urban street tree dataset for image classification and instance segmentation"],"prefix":"10.1016","volume":"209","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5441-1188","authenticated-orcid":false,"given":"Tingting","family":"Yang","sequence":"first","affiliation":[]},{"given":"Suyin","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Zhijie","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Aijun","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Junhua","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Jianxin","family":"Yin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2023.107852_b0005","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1134\/S1054661815020029","article-title":"Hevea leaf boundary identification based on morphological transformation and edge detection[J]","volume":"25","author":"Anjomshoae","year":"2015","journal-title":"Pattern Recognit Image Anal."},{"key":"10.1016\/j.compag.2023.107852_b0010","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.ecoinf.2018.05.007","article-title":"Bark and leaf fusion systems to improve automatic tree species recognition[J]","volume":"46","author":"Bertrand","year":"2018","journal-title":"Ecol. Inform.: Int. J. Ecoinform. Comput. Ecol."},{"key":"10.1016\/j.compag.2023.107852_b0015","doi-asserted-by":"crossref","unstructured":"Bertrand, S., Cerutti, G., Tougne, L., 2017. Bark Recognition to Improve Leaf-based Classification in Didactic Tree Species Identification [C]. In: Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2017: 435-442. https:\/\/doi.org\/10.5220\/0006108504350442.","DOI":"10.5220\/0006108504350442"},{"key":"10.1016\/j.compag.2023.107852_b0020","first-page":"187","article-title":"Statistical analysis of texture in trunk images for biometric identification of tree species [J]","author":"Bressane","year":"2015","journal-title":"Environ. Monit. Assess."},{"key":"10.1016\/j.compag.2023.107852_b0025","doi-asserted-by":"crossref","unstructured":"Carpentier, M., Gigu\u00e8re, P., Gaudreault, J., 2018. Tree species identification from bark images using convolutional neural networks [C]. In: 2018 IEEE\/RSJ International Conference on Intelligent Robots and Systems, 2018, pages: 1075\u20131081. https:\/\/doi.org\/10.1109\/IROS.2018.8593514.","DOI":"10.1109\/IROS.2018.8593514"},{"key":"10.1016\/j.compag.2023.107852_b0030","unstructured":"Cerutti, G., Antoine, V., Tougne, L., et al., 2012. ReVeS Participation - Tree Species Classification using Random Forests and Botanical Features [C]. In: Conference and Labs of the Evaluation Forum. 2012. https:\/\/www.researchgate.net\/publication\/236011768."},{"key":"10.1016\/j.compag.2023.107852_b0035","doi-asserted-by":"crossref","unstructured":"Cerutti, G.,Tougne, L., Coquin, D., Vacavant, A., 2013a. Curvature-scale-based contour understanding for leaf margin shape recognition and species identification [C]. In: International Conference on Computer Vision Theory and Applications (VISAPP), 2013 (a), Barcelona, Spain. pp.277-284.","DOI":"10.5220\/0004225402770284"},{"issue":"10","key":"10.1016\/j.compag.2023.107852_b0040","doi-asserted-by":"crossref","first-page":"1482","DOI":"10.1016\/j.cviu.2013.07.003","article-title":"Understanding leaves in natural images a model-based approach for tree species identification [J]","volume":"117","author":"Cerutti","year":"2013","journal-title":"Comput. Vis. Image Underst."},{"year":"2017","series-title":"Rethinking Atrous Convolution for Semantic Image Segmentation [J]","author":"Chen","key":"10.1016\/j.compag.2023.107852_b0045"},{"key":"10.1016\/j.compag.2023.107852_b0050","doi-asserted-by":"crossref","unstructured":"Cordts, M., Omran, M., Ramos, S., et al., 2016. The cityscapes dataset for semantic urban scene understanding [C]. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. https:\/\/doi.org\/10.1109\/CVPR.2016.350.","DOI":"10.1109\/CVPR.2016.350"},{"issue":"3","key":"10.1016\/j.compag.2023.107852_b0055","first-page":"1253","article-title":"Identifying species of trees through bark images by convolutional neural networks with transfer learning method [J]","volume":"36","author":"Elmas","year":"2021","journal-title":"J. Fac. Eng. Archit. Gazi Univ."},{"issue":"8","key":"10.1016\/j.compag.2023.107852_b0060","first-page":"235","article-title":"Tree Species Recognition Based on Overall Tree Image and Ensemble of Transfer Learning[J]","volume":"50","author":"Feng","year":"2019","journal-title":"Transactions of the Chinese Society for Agricultural Machinery"},{"key":"10.1016\/j.compag.2023.107852_b0065","unstructured":"Fiel S. and Sablatnig R.. Automated Identification of Tree Species from Images of the Bark, Leaves and Needles [C]\/\/Proceedings of them16th Computer Vision Winter Workshop, 2011, pages. 67\u201374."},{"key":"10.1016\/j.compag.2023.107852_b0070","unstructured":"Go\u00ebau, H., Bonnet, P., Joly, A., et al., 2011a. The ImageCLEF 2011 plant images classification task [C]\/\/ImageCLEF2011, 2011(a)."},{"key":"10.1016\/j.compag.2023.107852_b0075","doi-asserted-by":"crossref","unstructured":"Go\u00ebau, H., Joly, A., Selmi, S., et al., 2011b. Visual-based plant species identification from crowd sourced Data. In: [C]\/\/Proceedings of the 19th ACM international conference on Multimedia, 2011(b), Pages 813\u2013814. https:\/\/doi.org\/10.1145\/2072298.2072472.","DOI":"10.1145\/2072298.2072472"},{"key":"10.1016\/j.compag.2023.107852_b0080","doi-asserted-by":"crossref","unstructured":"Go\u00ebau, H., Bonnet, P., Joly, A., et al.. Pl@ntnet mobile app [C] In: Proceedings of the 21st ACM international conference on Multimedia, 2013, pages 423\u2013424. https:\/\/doi.org\/10.1145\/2502081.2502251.","DOI":"10.1145\/2502081.2502251"},{"year":"2012","series-title":"plant image identification task, CLEF 2012 working notes, ImageCLEF 2012 working notes","author":"Go\u00ebau","key":"10.1016\/j.compag.2023.107852_b0085"},{"key":"10.1016\/j.compag.2023.107852_b0090","doi-asserted-by":"crossref","DOI":"10.1109\/TIP.2015.2400214","article-title":"Tree leaves extraction in natural images: comparative study of preprocessing tools and segmentation methods[J]","author":"Grand-Brochier","year":"2015","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compag.2023.107852_b0095","series-title":"Identification Based on Convolutional Neural Networks[C]\/\/International Conference on Intelligent Human-machine Systems & Cybernetics","article-title":"Tree Species","author":"Hong","year":"2016"},{"key":"10.1016\/j.compag.2023.107852_b0100","doi-asserted-by":"crossref","unstructured":"Howard, A., Sandler, M., Chen, B., et al., 2020. Searching for MobileNetV3 [C]. In: 2019 IEEE\/CVF International Conference on Computer Vision (ICCV). 2020. https:\/\/doi.org\/10.1109\/ICCV.2019.00140.","DOI":"10.1109\/ICCV.2019.00140"},{"year":"2017","series-title":"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[J]","author":"Howard","key":"10.1016\/j.compag.2023.107852_b0105"},{"key":"10.1016\/j.compag.2023.107852_b0110","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2019.113154","article-title":"Evidential two-step tree species recognition approach from leaves and bark[J]","volume":"146","author":"Jendoubi","year":"2020","journal-title":"Exp. Syst. Appl."},{"issue":"1","key":"10.1016\/j.compag.2023.107852_b0115","first-page":"1","article-title":"Identifying and extracting bark key features of 42 tree species using convolutional neural networks and class activation mapping[J]","volume":"12","author":"Kim","year":"2022","journal-title":"Sci. Rep."},{"issue":"2","key":"10.1016\/j.compag.2023.107852_b0120","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks [J]","volume":"25","author":"Krizhevsky","year":"2012","journal-title":"Adv. Neural Inf. Proces. Syst."},{"key":"10.1016\/j.compag.2023.107852_b0125","doi-asserted-by":"crossref","unstructured":"Kumar, N., Belhumeur, P.N., Biswas, A., et al., 2012. Leafsnap: A computer vision system for automatic plant species identification [C]\/\/Computer Vision-ECCV 2012, pages 502\u2013516. https:\/\/doi.org\/10.1007\/978-3-642-33709-3_36.","DOI":"10.1007\/978-3-642-33709-3_36"},{"year":"1998","series-title":"Barktex benchmark database of color textured images","author":"Lakmann","key":"10.1016\/j.compag.2023.107852_b0130"},{"key":"10.1016\/j.compag.2023.107852_b0135","doi-asserted-by":"crossref","unstructured":"Mittal, P., Kansal, M., Jhajj, H.K., 2018. Combined Classifier for Plant Classification and Identification from Leaf Image Based on Visual Attributes [C]. In: 2018 International Conference on Intelligent Circuits and Systems, 2018. https:\/\/doi.org\/10.1109\/ICICS.2018.00046.","DOI":"10.1109\/ICICS.2018.00046"},{"issue":"1","key":"10.1016\/j.compag.2023.107852_b0140","doi-asserted-by":"crossref","first-page":"543","DOI":"10.1007\/s11042-013-1418-8","article-title":"A new benchmark image test suite for evaluating color texture classification schemes [J]","volume":"70","author":"Porebski","year":"2013","journal-title":"Multimed. Tools Appl."},{"key":"10.1016\/j.compag.2023.107852_b0145","doi-asserted-by":"crossref","unstructured":"Ratajczak R., Bertrand S., Crispim-Junior C., Tougne L.. Efficient Bark Recognition in the Wild [C]\/\/International Conference on Computer Vision Theory and Applications, 2019. https:\/\/doi.org\/10.5220\/0007361902400248.","DOI":"10.5220\/0007361900002108"},{"key":"10.1016\/j.compag.2023.107852_b0150","doi-asserted-by":"crossref","unstructured":"Robert M., Dallaire P., Gigu\u00e8re P.. Tree bark reidentification using a deep-learning feature descriptor. 2020 17th Conference on Computer and Robot Vision (CRV)[C]\/\/2020. https:\/\/doi.org\/10.1109\/CRV50864.2020.00012.","DOI":"10.1109\/CRV50864.2020.00012"},{"issue":"4","key":"10.1016\/j.compag.2023.107852_b0155","doi-asserted-by":"crossref","first-page":"640","DOI":"10.1109\/TPAMI.2016.2572683","article-title":"Fully Convolutional Networks for Semantic Segmentation [J]","volume":"39","author":"Shelhamer","year":"2016","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"year":"2014","series-title":"Very Deep Convolutional Networks for Large-Scale Image Recognition [J]","author":"Simonyan","key":"10.1016\/j.compag.2023.107852_b0160"},{"key":"10.1016\/j.compag.2023.107852_b0165","unstructured":"\u0160vab M. [M]. Computer-vision-based tree trunk recognition. 2014."},{"key":"10.1016\/j.compag.2023.107852_b0170","doi-asserted-by":"crossref","unstructured":"Szegedy C., Liu W., Jia Y., et al. Going Deeper with Convolutions [C]\/\/2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015: 1-9. https:\/\/doi.org\/10.1109\/CVPR.2015.7298594.","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"10.1016\/j.compag.2023.107852_b0175","doi-asserted-by":"crossref","first-page":"1391","DOI":"10.1007\/s10342-021-01407-7","article-title":"Deep BarkID: a portable tree bark identification system by knowledge distillation [J]","volume":"140","author":"Wu","year":"2021","journal-title":"Eur. J. For. Res."},{"key":"10.1016\/j.compag.2023.107852_b0180","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2019.104875","article-title":"Passive measurement method of tree diameter at breast height using a smartphone[J]","volume":"163","author":"Wu","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107852_b0185","series-title":"International Conference on Multimedia & Expo","first-page":"254","article-title":"Leaf Shape Descriptor for Tree Species Identification[C]\/\/IEEE","author":"Yahiaoui","year":"2012"},{"key":"10.1016\/j.compag.2023.107852_b0190","article-title":"Semantic understanding of scenes through the ADE20K dataset","volume":"3","author":"Zhou","year":"2019","journal-title":"Int. J. Comput. Vis."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923002405?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923002405?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,18]],"date-time":"2024-10-18T19:50:56Z","timestamp":1729281056000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169923002405"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6]]},"references-count":38,"alternative-id":["S0168169923002405"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.107852","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2023,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Urban street tree dataset for image classification and instance segmentation","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.107852","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107852"}}