{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T12:38:26Z","timestamp":1726231106396},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,7,1]],"date-time":"2023-07-01T00:00:00Z","timestamp":1688169600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003668","name":"Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003668","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003624","name":"Ministry of Agriculture, Food and Rural Affairs","doi-asserted-by":"publisher","award":["320029-03-3-HD050"],"id":[{"id":"10.13039\/501100003624","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,7]]},"DOI":"10.1016\/j.compag.2023.107847","type":"journal-article","created":{"date-parts":[[2023,5,4]],"date-time":"2023-05-04T05:17:50Z","timestamp":1683177470000},"page":"107847","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":13,"special_numbering":"C","title":["Application of amodal segmentation on cucumber segmentation and occlusion recovery"],"prefix":"10.1016","volume":"210","author":[{"given":"Sungjay","family":"Kim","sequence":"first","affiliation":[]},{"given":"Suk-Ju","family":"Hong","sequence":"additional","affiliation":[]},{"given":"Jiwon","family":"Ryu","sequence":"additional","affiliation":[]},{"given":"Eungchan","family":"Kim","sequence":"additional","affiliation":[]},{"given":"Chang-Hyup","family":"Lee","sequence":"additional","affiliation":[]},{"given":"Ghiseok","family":"Kim","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"111","key":"10.1016\/j.compag.2023.107847_b0005","article-title":"OpenSurfaces: A Richly Annotated Catalog of Surface Appearance","volume":"32","author":"Bell","year":"2013","journal-title":"ACM Trans. Graph"},{"key":"10.1016\/j.compag.2023.107847_b0010","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106450","article-title":"Detecting ripe fruits under natural occlusion and illumination conditions","volume":"190","author":"Chen","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107847_b0015","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106896","article-title":"An image restoration and detection method for picking robot based on convolutional auto-encoder","volume":"196","author":"Chen","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107847_b0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107480","article-title":"Unsupervised domain adaptation using transformers for sugarcane rows and gaps detection","volume":"203","author":"dos Santos Ferreira","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107847_b0025","unstructured":"Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. http:\/\/arxiv.org\/abs\/2010.11929."},{"key":"10.1016\/j.compag.2023.107847_b0030","doi-asserted-by":"crossref","first-page":"35512","DOI":"10.1109\/ACCESS.2018.2851376","article-title":"Automatic Detection of Field-Grown Cucumbers for Robotic Harvesting","volume":"6","author":"Fernandez","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.compag.2023.107847_b0035","unstructured":"Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Brendel, W. (2019). IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROBUSTNESS. https:\/\/github.com\/rgeirhos\/texture-vs-shape."},{"key":"10.1016\/j.compag.2023.107847_b0040","doi-asserted-by":"crossref","unstructured":"Ghodrati, V., Shao, J., Bydder, M., Zhou, Z., Yin, W., Nguyen, K. L., Yang, Y., & Hu, P. (2019). MR image reconstruction using deep learning: Evaluation of network structure and loss functions. Quantitative Imaging in Medicine and Surgery, 9(9), 1516\u20131527. 10.21037\/qims.2019.08.10.","DOI":"10.21037\/qims.2019.08.10"},{"key":"10.1016\/j.compag.2023.107847_b0045","doi-asserted-by":"crossref","unstructured":"Girshick, R. (2015). Fast R-CNN. http:\/\/arxiv.org\/abs\/1504.08083.","DOI":"10.1109\/ICCV.2015.169"},{"key":"10.1016\/j.compag.2023.107847_b0050","unstructured":"Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks. http:\/\/arxiv.org\/abs\/1406.2661."},{"key":"10.1016\/j.compag.2023.107847_b0055","author":"Grimstad","year":"2018","journal-title":"A Novel Autonomous Robot for Greenhouse Applications."},{"key":"10.1016\/j.compag.2023.107847_b0060","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. http:\/\/arxiv.org\/abs\/1512.03385.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.compag.2023.107847_b0065","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., & Girshick, R. (2017). Mask R-CNN. http:\/\/arxiv.org\/abs\/1703.06870.","DOI":"10.1109\/ICCV.2017.322"},{"issue":"5","key":"10.1016\/j.compag.2023.107847_b0070","doi-asserted-by":"crossref","first-page":"1186","DOI":"10.1016\/j.compeleceng.2011.11.005","article-title":"Automatic recognition vision system guided for apple harvesting robot","volume":"38","author":"Ji","year":"2012","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.compag.2023.107847_b0080","doi-asserted-by":"crossref","unstructured":"Li, K., & Malik, J. (2016). Amodal Instance Segmentation. http:\/\/arxiv.org\/abs\/1604.08202.","DOI":"10.1109\/CVPR.2016.398"},{"key":"10.1016\/j.compag.2023.107847_b0085","first-page":"7341","article-title":"Mimicking Very Efficient Network for Object Detection","volume":"2017","author":"Li","year":"2017","journal-title":"IEEE Conference on Computer Vision and Pattern Recognition (CVPR)"},{"issue":"7","key":"10.1016\/j.compag.2023.107847_b0090","doi-asserted-by":"crossref","DOI":"10.3390\/s20072145","article-title":"YOLO-tomato: A robust algorithm for tomato detection based on YOLOv3","volume":"20","author":"Liu","year":"2020","journal-title":"Sensors (Switzerland)"},{"key":"10.1016\/j.compag.2023.107847_b0095","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107448","article-title":"Self-supervised transformer-based pre-training method using latent semantic masking auto-encoder for pest and disease classification","volume":"203","author":"Liu","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107847_b0100","doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., & Darrell, T. (2014). Fully Convolutional Networks for Semantic Segmentation. http:\/\/arxiv.org\/abs\/1411.4038.","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"10.1016\/j.compag.2023.107847_b0105","doi-asserted-by":"crossref","unstructured":"Malik, M. H., Zhang, T., Li, H., Zhang, M., Shabbir, S., & Saeed, A. (2018). Mature Tomato Fruit Detection Algorithm Based on improved HSV and Watershed Algorithm. 51(17), 431\u2013436. 10.1016\/j.ifacol.2018.08.183.","DOI":"10.1016\/j.ifacol.2018.08.183"},{"key":"10.1016\/j.compag.2023.107847_b0110","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105254","article-title":"Automatic cucumber recognition algorithm for harvesting robots in the natural environment using deep learning and multi-feature fusion","volume":"170","author":"Mao","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107847_b0115","doi-asserted-by":"crossref","unstructured":"P\u00e9rez, P., Gangnet, M., & Blake, A. (2003). Poisson Image Editing.","DOI":"10.1145\/1201775.882269"},{"key":"10.1016\/j.compag.2023.107847_b0120","unstructured":"Pinheiro, P. O., Collobert, R., & Doll\u00e1r, P. (2015). Learning to Segment Object Candidates."},{"key":"10.1016\/j.compag.2023.107847_b0125","unstructured":"Pinheiro, P. O., Lin, T.-Y., Collobert, R., & Doll\u00e0r, P. (2016). Learning to Refine Object Segments. http:\/\/arxiv.org\/abs\/1603.08695."},{"key":"10.1016\/j.compag.2023.107847_b0130","first-page":"3009","article-title":"Amodal Instance Segmentation With KINS Dataset","volume":"2019","author":"Qi","year":"2019","journal-title":"IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR)"},{"key":"10.1016\/j.compag.2023.107847_b0135","unstructured":"Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. http:\/\/arxiv.org\/abs\/1804.02767."},{"key":"10.1016\/j.compag.2023.107847_b0140","unstructured":"Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. http:\/\/arxiv.org\/abs\/1506.01497."},{"key":"10.1016\/j.compag.2023.107847_b0145","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional Networks for Biomedical Image Segmentation. http:\/\/arxiv.org\/abs\/1505.04597.","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"10.1016\/j.compag.2023.107847_b0150","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2015). Rethinking the Inception Architecture for Computer Vision. http:\/\/arxiv.org\/abs\/1512.00567.","DOI":"10.1109\/CVPR.2016.308"},{"key":"10.1016\/j.compag.2023.107847_b0155","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107518","article-title":"FormerLeaf: An efficient vision transformer for Cassava Leaf Disease detection","volume":"204","author":"Thai","year":"2023","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107847_b0160","doi-asserted-by":"crossref","DOI":"10.1023\/A:1020568125418","article-title":"An Autonomous Robot for Harvesting Cucumbers in Greenhouses. In","volume":"13","author":"van Henten","year":"2002","journal-title":"Auton. Robot."},{"issue":"3","key":"10.1016\/j.compag.2023.107847_b0165","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1016\/j.biosystemseng.2003.08.002","article-title":"Field Test of an Autonomous Cucumber Picking Robot","volume":"86","author":"van Henten","year":"2003","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2023.107847_b0170","unstructured":"Wada, K., Kitagawa, S., Okada, K., & Inaba, M. (2020). Instance Segmentation of Visible and Occluded Regions for Finding and Picking Target from a Pile of Objects. http:\/\/arxiv.org\/abs\/2001.07475."},{"key":"10.1016\/j.compag.2023.107847_b0175","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107163","article-title":"Practical cucumber leaf disease recognition using improved Swin Transformer and small sample size","volume":"199","author":"Wang","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107847_b0180","doi-asserted-by":"crossref","unstructured":"Wu, J., Zhang, B., Zhou, J., Xiong, Y., Gu, B., & Yang, X. (2019). Automatic Recognition of Ripening Tomatoes by Combining Multi-Feature Fusion with a Bi-Layer Classification Strategy for Harvesting Robots. 10.3390\/s19030612.","DOI":"10.3390\/s19030612"},{"key":"10.1016\/j.compag.2023.107847_b0185","unstructured":"Xiao, Y., Xu, Y., Zhong, Z., Luo, W., Li, J., & Gao, S. (2020). Amodal Segmentation Based on Visible Region Segmentation and Shape Prior. http:\/\/arxiv.org\/abs\/2012.05598."},{"key":"10.1016\/j.compag.2023.107847_b0190","doi-asserted-by":"crossref","unstructured":"Zhang, S., Wen, L., Bian, X., Lei, Z., & Li, S. Z. (2018). Occlusion-aware R-CNN: Detecting Pedestrians in a Crowd. http:\/\/arxiv.org\/abs\/1807.08407.","DOI":"10.1007\/978-3-030-01219-9_39"},{"key":"10.1016\/j.compag.2023.107847_b0195","doi-asserted-by":"crossref","DOI":"10.1016\/j.mechatronics.2021.102644","article-title":"System design and control of an apple harvesting robot","volume":"79","author":"Zhang","year":"2021","journal-title":"Mechatronics"},{"issue":"5","key":"10.1016\/j.compag.2023.107847_b0200","doi-asserted-by":"crossref","first-page":"1293","DOI":"10.1080\/00288230709510415","article-title":"Recognition of greenhouse cucumber fruit using computer vision","volume":"50","author":"Zhang","year":"2007","journal-title":"N. Z. J. Agric. Res."},{"issue":"2","key":"10.1016\/j.compag.2023.107847_b0205","doi-asserted-by":"crossref","first-page":"173","DOI":"10.3390\/s16020173","article-title":"Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion","volume":"16","author":"Zhao","year":"2016","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2023.107847_b0210","unstructured":"Zhu, Y., Tian, Y., Mexatas, D., & Doll\u00e1r, P. (2015). Semantic Amodal Segmentation. http:\/\/arxiv.org\/abs\/1509.01329."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923002351?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923002351?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,7,27]],"date-time":"2023-07-27T01:37:08Z","timestamp":1690421828000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169923002351"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7]]},"references-count":41,"alternative-id":["S0168169923002351"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.107847","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2023,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Application of amodal segmentation on cucumber segmentation and occlusion recovery","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.107847","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"107847"}}