{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T09:02:08Z","timestamp":1742806928523},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,7]],"date-time":"2023-09-07T00:00:00Z","timestamp":1694044800000},"content-version":"vor","delay-in-days":159,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1016\/j.compag.2023.107757","type":"journal-article","created":{"date-parts":[[2023,3,9]],"date-time":"2023-03-09T11:19:31Z","timestamp":1678360771000},"page":"107757","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":82,"special_numbering":"C","title":["Detection of tomato plant phenotyping traits using YOLOv5-based single stage detectors"],"prefix":"10.1016","volume":"207","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3313-4817","authenticated-orcid":false,"given":"Angelo","family":"Cardellicchio","sequence":"first","affiliation":[]},{"given":"Firozeh","family":"Solimani","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4120-5876","authenticated-orcid":false,"given":"Giovanni","family":"Dimauro","sequence":"additional","affiliation":[]},{"given":"Angelo","family":"Petrozza","sequence":"additional","affiliation":[]},{"given":"Stephan","family":"Summerer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8429-9614","authenticated-orcid":false,"given":"Francesco","family":"Cellini","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1830-4961","authenticated-orcid":false,"given":"Vito","family":"Ren\u00f2","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2023.107757_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.compeleceng.2021.107098","article-title":"Real-time plant phenomics under robotic farming setup: A vision-based platform for complex plant phenotyping tasks","volume":"92","author":"Arunachalam","year":"2021","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.compag.2023.107757_b2","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.biosystemseng.2020.01.023","article-title":"Robust node detection and tracking in fruit-vegetable crops using deep learning and multi-view imaging","volume":"192","author":"Boogaard","year":"2020","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2023.107757_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106715","article-title":"Real-time defects detection for apple sorting using NIR cameras with pruning-based YOLOV4 network","volume":"193","author":"Fan","year":"2022","journal-title":"Comput. Electron. Agric."},{"issue":"5","key":"10.1016\/j.compag.2023.107757_b4","doi-asserted-by":"crossref","first-page":"930","DOI":"10.3390\/agronomy11050930","article-title":"Phosphorus supply increases internode length and leaf characteristics, and increases dry matter accumulation and seed yield in soybean under water deficit","volume":"11","author":"Feng","year":"2021","journal-title":"Agronomy"},{"issue":"2","key":"10.1016\/j.compag.2023.107757_b5","doi-asserted-by":"crossref","first-page":"391","DOI":"10.3390\/agronomy12020391","article-title":"YOLO-banana: A lightweight neural network for rapid detection of banana bunches and stalks in the natural environment","volume":"12","author":"Fu","year":"2022","journal-title":"Agronomy"},{"key":"10.1016\/j.compag.2023.107757_b6","article-title":"A detection algorithm for cherry fruits based on the improved YOLO-v4 model","author":"Gai","year":"2021","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.compag.2023.107757_b7","series-title":"Fast R-CNN","first-page":"1440","author":"Girshick","year":"2015"},{"key":"10.1016\/j.compag.2023.107757_b8","series-title":"Deep residual learning for image recognition","author":"He","year":"2015"},{"key":"10.1016\/j.compag.2023.107757_b9","series-title":"MobileNets: Efficient convolutional neural networks for mobile vision applications","author":"Howard","year":"2017"},{"key":"10.1016\/j.compag.2023.107757_b10","series-title":"yolov5","author":"Jocher","year":"2022"},{"key":"10.1016\/j.compag.2023.107757_b11","series-title":"Data Science (Second Edition)","first-page":"19","article-title":"Chapter 2 - data science process","author":"Kotu","year":"2019"},{"issue":"1","key":"10.1016\/j.compag.2023.107757_b12","doi-asserted-by":"crossref","first-page":"1447","DOI":"10.1038\/s41598-021-81216-5","article-title":"Tomato detection based on modified YOLOv3 framework","volume":"11","author":"Lawal","year":"2021","journal-title":"Sci. Rep."},{"issue":"17","key":"10.1016\/j.compag.2023.107757_b13","doi-asserted-by":"crossref","first-page":"26751","DOI":"10.1007\/s11042-021-10933-w","article-title":"Development of tomato detection model for robotic platform using deep learning","volume":"80","author":"Lawal","year":"2021","journal-title":"Multimedia Tools Appl."},{"key":"10.1016\/j.compag.2023.107757_b14","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106503","article-title":"Fast and accurate green pepper detection in complex backgrounds via an improved Yolov4-tiny model","volume":"191","author":"Li","year":"2021","journal-title":"Comput. Electron. Agric."},{"issue":"6","key":"10.1016\/j.compag.2023.107757_b15","doi-asserted-by":"crossref","first-page":"591","DOI":"10.21273\/JASHS03913-16","article-title":"Drought stress reduces stem elongation and alters gibberellin-related gene expression during vegetative growth of tomato","volume":"141","author":"Litvin","year":"2016","journal-title":"J. Am. Soc. Horticult. Sci."},{"issue":"13","key":"10.1016\/j.compag.2023.107757_b16","doi-asserted-by":"crossref","first-page":"6600","DOI":"10.3390\/app12136600","article-title":"Detection of dense citrus fruits by combining coordinated attention and cross-scale connection with weighted feature fusion","volume":"12","author":"Liu","year":"2022","journal-title":"Appl. Sci."},{"issue":"7","key":"10.1016\/j.compag.2023.107757_b17","doi-asserted-by":"crossref","first-page":"2145","DOI":"10.3390\/s20072145","article-title":"YOLO-tomato: A robust algorithm for tomato detection based on YOLOv3","volume":"20","author":"Liu","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2023.107757_b18","article-title":"Tomato diseases and pests detection based on improved yolo V3 convolutional neural network","volume":"11","author":"Liu","year":"2020","journal-title":"Front. Plant Sci."},{"issue":"10","key":"10.1016\/j.compag.2023.107757_b19","doi-asserted-by":"crossref","first-page":"3569","DOI":"10.3390\/s21103569","article-title":"Evaluating the single-shot MultiBox detector and YOLO deep learning models for the detection of tomatoes in a greenhouse","volume":"21","author":"Magalh\u00e3es","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2023.107757_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.jplph.2021.153581","article-title":"Differential physiological response to heat and cold stress of tomato plants and its implication on fruit quality","volume":"268","author":"Mesa","year":"2022","journal-title":"J. Plant Physiol."},{"key":"10.1016\/j.compag.2023.107757_b21","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106533","article-title":"Fruit detection and load estimation of an orange orchard using the YOLO models through simple approaches in different imaging and illumination conditions","volume":"191","author":"Mirhaji","year":"2021","journal-title":"Comput. Electron. Agric."},{"issue":"10","key":"10.1016\/j.compag.2023.107757_b22","doi-asserted-by":"crossref","first-page":"2984","DOI":"10.3390\/s20102984","article-title":"Intact detection of highly occluded immature tomatoes on plants using deep learning techniques","volume":"20","author":"Mu","year":"2020","journal-title":"Sensors"},{"issue":"9","key":"10.1016\/j.compag.2023.107757_b23","doi-asserted-by":"crossref","first-page":"1294","DOI":"10.21273\/HORTSCI13317-18","article-title":"Heritability of flower number and fruit set under heat stress in tomato","volume":"53","author":"Panthee","year":"2018","journal-title":"HortScience"},{"key":"10.1016\/j.compag.2023.107757_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106780","article-title":"An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease","volume":"194","author":"Qi","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107757_b25","first-page":"779","article-title":"You only look once: Unified, real-time object detection","author":"Redmon","year":"2016"},{"key":"10.1016\/j.compag.2023.107757_b26","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106694","article-title":"Real-time growth stage detection model for high degree of occultation using DenseNet-fused YOLOv4","volume":"193","author":"Roy","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107757_b27","series-title":"Proceedings of the International E-Conference on Intelligent Systems and Signal Processing","first-page":"511","article-title":"Real-time tomato detection, classification, and counting system using deep learning and embedded systems","author":"Ruparelia","year":"2022"},{"key":"10.1016\/j.compag.2023.107757_b28","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105247","article-title":"Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association","volume":"170","author":"Santos","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107757_b29","unstructured":"Sekachev, B., Manovich, N., Zhiltsov, M., Zhavoronkov, A., Kalinin, D., Hoff, B., Computer vision annotation tool. URL: https:\/\/github.com\/openvinotoolkit\/cvat."},{"key":"10.1016\/j.compag.2023.107757_b30","series-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2015"},{"issue":"2","key":"10.1016\/j.compag.2023.107757_b31","doi-asserted-by":"crossref","first-page":"319","DOI":"10.3390\/agronomy12020319","article-title":"Automatic bunch detection in white grape varieties using YOLOv3, YOLOv4, and YOLOv5 deep learning algorithms","volume":"12","author":"Sozzi","year":"2022","journal-title":"Agronomy"},{"key":"10.1016\/j.compag.2023.107757_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106052","article-title":"Improved multi-classes kiwifruit detection in orchard to avoid collisions during robotic picking","volume":"182","author":"Suo","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107757_b33","series-title":"EfficientDet: Scalable and efficient object detection","author":"Tan","year":"2020"},{"key":"10.1016\/j.compag.2023.107757_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105348","article-title":"Comparison of convolutional neural networks in fruit detection and counting: A comprehensive evaluation","volume":"173","author":"Vasconez","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107757_b35","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1016\/j.biosystemseng.2021.08.015","article-title":"Channel pruned YOLO v5s-based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning","volume":"210","author":"Wang","year":"2021","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2023.107757_b36","article-title":"Tomato anomalies detection in greenhouse scenarios based on YOLO-dense","volume":"12","author":"Wang","year":"2021","journal-title":"Front. Plant Sci."},{"issue":"11","key":"10.1016\/j.compag.2023.107757_b37","doi-asserted-by":"crossref","first-page":"2659","DOI":"10.3390\/agronomy12112659","article-title":"Convolutional neural networks in computer vision for grain crop phenotyping: A review","volume":"12","author":"Wang","year":"2022","journal-title":"Agronomy"},{"issue":"7","key":"10.1016\/j.compag.2023.107757_b38","doi-asserted-by":"crossref","first-page":"1044","DOI":"10.3390\/s16071044","article-title":"Node detection and internode length estimation of tomato seedlings based on image analysis and machine learning","volume":"16","author":"Yamamoto","year":"2016","journal-title":"Sensors"},{"issue":"7","key":"10.1016\/j.compag.2023.107757_b39","doi-asserted-by":"crossref","first-page":"12191","DOI":"10.3390\/s140712191","article-title":"On plant detection of intact tomato fruits using image analysis and machine learning methods","volume":"14","author":"Yamamoto","year":"2014","journal-title":"Sensors"},{"issue":"14","key":"10.1016\/j.compag.2023.107757_b40","doi-asserted-by":"crossref","first-page":"1711","DOI":"10.3390\/electronics10141711","article-title":"A real-time detection algorithm for kiwifruit defects based on YOLOv5","volume":"10","author":"Yao","year":"2021","journal-title":"Electronics"},{"key":"10.1016\/j.compag.2023.107757_b41","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106714","article-title":"EPSA-YOLO-v5s: A novel method for detecting the survival rate of rapeseed in a plant factory based on multiple guarantee mechanisms","volume":"193","author":"Zhang","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107757_b42","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107029","article-title":"Research on tomato detection in natural environment based on RC-YOLOv4","volume":"198","author":"Zheng","year":"2022","journal-title":"Comput. Electron. Agric."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S016816992300145X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S016816992300145X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,9]],"date-time":"2023-09-09T22:51:05Z","timestamp":1694299865000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S016816992300145X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":42,"alternative-id":["S016816992300145X"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.107757","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Detection of tomato plant phenotyping traits using YOLOv5-based single stage detectors","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.107757","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"107757"}}