{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T23:29:58Z","timestamp":1725319798093},"reference-count":76,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1016\/j.compag.2023.107721","type":"journal-article","created":{"date-parts":[[2023,3,2]],"date-time":"2023-03-02T18:21:07Z","timestamp":1677781267000},"page":"107721","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":16,"special_numbering":"C","title":["Machine learning technology for early prediction of grain yield at the field scale: A systematic review"],"prefix":"10.1016","volume":"207","author":[{"given":"Joerg","family":"Leukel","sequence":"first","affiliation":[]},{"given":"Tobias","family":"Zimpel","sequence":"additional","affiliation":[]},{"given":"Christoph","family":"Stumpe","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2023.107721_b0005","doi-asserted-by":"crossref","first-page":"2141","DOI":"10.3390\/rs13112141","article-title":"Temporal vegetation indices and plant height from remotely sensed imagery can predict grain yield and flowering time breeding value in maize via machine learning regression","volume":"13","author":"Adak","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2023.107721_b0010","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.107024","article-title":"Sugarcane yields prediction at the row level using a novel cross-validation approach to multi-year multispectral images","volume":"198","author":"Akbarian","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107721_b0015","doi-asserted-by":"crossref","first-page":"10520","DOI":"10.1109\/JSTARS.2021.3118707","article-title":"Estimation of crop yield from combined optical and SAR imagery using Gaussian kernel regression","volume":"14","author":"Alebele","year":"2021","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"10.1016\/j.compag.2023.107721_b0020","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1007\/s11831-021-09569-8","article-title":"Emerging trends in machine learning to predict crop yield and study its influential factors: a survey","volume":"29","author":"Bali","year":"2022","journal-title":"Arch. Comput. Methods Eng."},{"key":"10.1016\/j.compag.2023.107721_b0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2019.105197","article-title":"Modeling yield response to crop management using convolutional neural networks","volume":"170","author":"Barbosa","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107721_b0030","doi-asserted-by":"crossref","first-page":"1789","DOI":"10.3390\/agronomy11091789","article-title":"Vineyard yield estimation, prediction, and forecasting: a systematic literature review","volume":"11","author":"Barriguinha","year":"2021","journal-title":"Agronomy"},{"key":"10.1016\/j.compag.2023.107721_b0035","doi-asserted-by":"crossref","first-page":"2392","DOI":"10.3390\/rs12152392","article-title":"Use of UAS multispectral imagery at different physiological stages for yield prediction and input resource optimization in corn","volume":"12","author":"Barzin","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2023.107721_b0040","article-title":"Artificial neural network model in predicting yield of mechanically transplanted rice from transplanting parameters in Bangladesh","volume":"5","author":"Basir","year":"2021","journal-title":"J. Agric. Food Inf."},{"key":"10.1016\/j.compag.2023.107721_b0045","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/bs.agron.2018.11.002","article-title":"Seasonal crop yield forecast: methods, applications, and accuracies","volume":"154","author":"Basso","year":"2019","journal-title":"Adv. Agron."},{"key":"10.1016\/j.compag.2023.107721_b0050","doi-asserted-by":"crossref","DOI":"10.3390\/s21113758","article-title":"Machine learning in agriculture: a comprehensive updated review","volume":"21","author":"Benos","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2023.107721_b0055","series-title":"Pattern Recognition and Machine Learning","first-page":"738","author":"Bishop","year":"2006"},{"key":"10.1016\/j.compag.2023.107721_b0060","doi-asserted-by":"crossref","first-page":"2438","DOI":"10.1080\/01431161.2015.1041174","article-title":"Influence of acquisition time and resolution on wheat yield estimation at the field scale from canopy biophysical variables retrieved from SPOT satellite data","volume":"36","author":"Castaldi","year":"2015","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2023.107721_b0065","doi-asserted-by":"crossref","first-page":"1247","DOI":"10.5194\/gmd-7-1247-2014","article-title":"Root mean square error (RMSE) or mean absolute error (MAE)? \u2013 arguments against avoiding RMSE in the literature","volume":"7","author":"Chai","year":"2014","journal-title":"Geosci. Model Dev."},{"key":"10.1016\/j.compag.2023.107721_b0070","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.compeleceng.2013.11.024","article-title":"A survey on feature selection methods","volume":"40","author":"Chandrashekar","year":"2014","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.compag.2023.107721_b0075","doi-asserted-by":"crossref","first-page":"987","DOI":"10.1016\/j.asr.2016.11.029","article-title":"A comparison of two adaptive multivariate analysis methods (PLSR and ANN) for winter wheat yield forecasting using Landsat-8 OLI images","volume":"59","author":"Chen","year":"2017","journal-title":"Adv. Space Res."},{"key":"10.1016\/j.compag.2023.107721_b0080","doi-asserted-by":"crossref","first-page":"3482","DOI":"10.3390\/rs13173482","article-title":"Improving biomass and grain yield prediction of wheat genotypes on sodic soil using integrated high-resolution multispectral, hyperspectral, 3D point cloud, and machine learning techniques","volume":"13","author":"Choudhury","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2023.107721_b0085","doi-asserted-by":"crossref","first-page":"622","DOI":"10.1007\/s11119-021-09852-5","article-title":"Using UAV-based hyperspectral imaging and functional regression to assist in predicting grain yield and related traits in wheat under heat-related stress environments for the purpose of stable yielding genotypes","volume":"23","author":"Costa","year":"2022","journal-title":"Precision Agric."},{"key":"10.1016\/j.compag.2023.107721_b0090","article-title":"UAV-multispectral and vegetation indices in soybean grain yield prediction based on in situ observation","volume":"18","author":"da Silva","year":"2020","journal-title":"Remote Sens. Appl.: Soc. Environ."},{"key":"10.1016\/j.compag.2023.107721_b0095","doi-asserted-by":"crossref","first-page":"3976","DOI":"10.3390\/rs13193976","article-title":"Maize yield prediction at an early developmental stage using multispectral images and genotype data for preliminary hybrid selection","volume":"13","author":"Danilevicz","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2023.107721_b0100","article-title":"Estimation of soybean yield from machine learning techniques and multispectral RPAS imagery","volume":"20","author":"Eugenio","year":"2020","journal-title":"Remote Sens. Appl.: Soc. Environ."},{"key":"10.1016\/j.compag.2023.107721_b0105","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1007\/s11119-020-09779-3","article-title":"Within-farm wheat yield forecasting incorporating off-farm information","volume":"22","author":"Fajardo","year":"2021","journal-title":"Precision Agric."},{"key":"10.1016\/j.compag.2023.107721_b0110","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106166","article-title":"Early prediction of the seed yield in winter oilseed rape based on the near-infrared reflectance of vegetation (NIRv)","volume":"186","author":"Fan","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107721_b0115","doi-asserted-by":"crossref","first-page":"2338","DOI":"10.3390\/rs13122338","article-title":"Assessment of ensemble learning to predict wheat grain yield based on UAV-multispectral reflectance","volume":"13","author":"Fei","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2023.107721_b0120","doi-asserted-by":"crossref","DOI":"10.3389\/fpls.2021.730181","article-title":"Entropy weight ensemble framework for yield prediction of winter wheat under different water stress treatments using unmanned aerial vehicle-based multispectral and thermal data","volume":"12","author":"Fei","year":"2021","journal-title":"Front. Plant Sci."},{"key":"10.1016\/j.compag.2023.107721_b0125","article-title":"Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique","volume":"285\u2013286","author":"Feng","year":"2020","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2023.107721_b0130","doi-asserted-by":"crossref","first-page":"327","DOI":"10.3390\/agronomy10030327","article-title":"Combined use of multi-temporal Landsat-8 and Sentinel-2 images for wheat yield estimates at the intra-plot spatial scale","volume":"10","author":"Fieuzal","year":"2020","journal-title":"Agronomy"},{"key":"10.1016\/j.compag.2023.107721_b0135","first-page":"14","article-title":"Estimation of corn yield using multi-temporal optical and radar satellite data and artificial neural networks","volume":"57","author":"Fieuzal","year":"2017","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.compag.2023.107721_b0140","doi-asserted-by":"crossref","first-page":"1015","DOI":"10.1007\/s11119-018-09628-4","article-title":"An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning","volume":"20","author":"Filippi","year":"2019","journal-title":"Precision Agric."},{"key":"10.1016\/j.compag.2023.107721_b0145","doi-asserted-by":"crossref","first-page":"258","DOI":"10.3390\/agriculture11030258","article-title":"The effect of antecedence on empirical model forecasts of crop yield from observations of canopy properties","volume":"11","author":"Florence","year":"2021","journal-title":"Agriculture"},{"key":"10.1016\/j.compag.2023.107721_b0150","doi-asserted-by":"crossref","first-page":"277","DOI":"10.3390\/agriculture10070277","article-title":"Corn grain yield estimation from vegetation indices, canopy cover, plant density, and a neural network using multispectral and RGB images scquired with unmanned aerial vehicles","volume":"10","author":"Garc\u00eda-Mart\u00ednez","year":"2020","journal-title":"Agriculture"},{"key":"10.1016\/j.compag.2023.107721_b0155","doi-asserted-by":"crossref","first-page":"e0249136","DOI":"10.1371\/journal.pone.0249136","article-title":"Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields","volume":"16","author":"Habyarimana","year":"2021","journal-title":"PLOS ONE"},{"key":"10.1016\/j.compag.2023.107721_b0160","doi-asserted-by":"crossref","first-page":"3241","DOI":"10.3390\/rs13163241","article-title":"Broadacre crop yield estimation using imaging spectroscopy from unmanned aerial systems (UAS): a field-based case study with snap bean","volume":"13","author":"Hassanzadeh","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2023.107721_b0165","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2022.106812","article-title":"Fruit yield prediction and estimation in orchards: a state-of-the-art comprehensive review for both direct and indirect methods","volume":"195","author":"He","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107721_b0170","unstructured":"Ho, T.K., 1995. Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition (ICDAR). IEEE, pp.278\u2013282."},{"key":"10.1016\/j.compag.2023.107721_b0175","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.111410","article-title":"High resolution wheat yield mapping using Sentinel-2","volume":"233","author":"Hunt","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2023.107721_b0180","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1126\/science.aaa8415","article-title":"Machine learning: trends, perspectives, and prospects","volume":"349","author":"Jordan","year":"2015","journal-title":"Science"},{"key":"10.1016\/j.compag.2023.107721_b0185","doi-asserted-by":"crossref","first-page":"2230","DOI":"10.3390\/rs12142230","article-title":"Using artificial neural networks and remotely sensed data to evaluate the relative importance of variables for prediction of within-field corn and soybean yields","volume":"12","author":"Kross","year":"2020","journal-title":"Rem. Sens."},{"key":"10.1016\/j.compag.2023.107721_b0190","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.compag.2023.107721_b0195","article-title":"Crop yield forecasting and associated optimum lead time analysis based on multi-source environmental data across China","volume":"308\u2013309","author":"Li","year":"2021","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2023.107721_b0200","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.agrformet.2015.02.021","article-title":"Towards regional grain yield forecasting with 1km-resolution EO biophysical products: strengths and limitations at pan-European level","volume":"206","author":"L\u00f3pez-Lozano","year":"2015","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2023.107721_b0205","doi-asserted-by":"crossref","unstructured":"Meng, L., Liu, H., L. Ustin, S., Zhang, X., 2021. Predicting maize yield at the plot scale of different fertilizer systems by multi-source data and machine learning methods. Remote Sens. 13, 3760. doi:10.3390\/rs13183760.","DOI":"10.3390\/rs13183760"},{"issue":"264\u20139","key":"10.1016\/j.compag.2023.107721_b0210","first-page":"W64","article-title":"Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement","volume":"151","author":"Moher","year":"2009","journal-title":"Ann. Intern. Med."},{"key":"10.1016\/j.compag.2023.107721_b0215","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecolind.2021.108081","article-title":"The use of machine learning methods to estimate aboveground biomass of grasslands: a review","volume":"130","author":"Morais","year":"2021","journal-title":"Ecol. Indic."},{"key":"10.1016\/j.compag.2023.107721_b0220","series-title":"Agricultural Internet of Things and Decision Support for Precision Smart Farming","first-page":"35","article-title":"Monitoring","author":"Mouazen","year":"2020"},{"key":"10.1016\/j.compag.2023.107721_b0225","doi-asserted-by":"crossref","first-page":"1990","DOI":"10.3390\/rs14091990","article-title":"A systematic literature review on crop yield prediction with deep learning and remote sensing","volume":"14","author":"Muruganantham","year":"2022","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2023.107721_b0230","doi-asserted-by":"crossref","first-page":"4000","DOI":"10.3390\/rs12234000","article-title":"Crop yield prediction using multitemporal UAV data and spatio-temporal deep Llarning models","volume":"12","author":"Nevavuori","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2023.107721_b0235","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2019.104859","article-title":"Crop yield prediction with deep convolutional neural networks","volume":"163","author":"Nevavuori","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107721_b0240","doi-asserted-by":"crossref","first-page":"11","DOI":"10.4314\/sajg.v7i1.2","article-title":"Estimation of maize grain yield using multispectral satellite data sets (SPOT 5) and the random forest algorithm","volume":"7","author":"Ngie","year":"2018","journal-title":"S. Afr. J. Geomat."},{"key":"10.1016\/j.compag.2023.107721_b0245","doi-asserted-by":"crossref","first-page":"2773","DOI":"10.3390\/app9142773","article-title":"Multicriteria prediction and simulation of winter wheat yield using extended qualitative and quantitative data based on artificial neural networks","volume":"9","author":"Niedba\u0142a","year":"2019","journal-title":"Appl. Sci."},{"key":"10.1016\/j.compag.2023.107721_b0250","doi-asserted-by":"crossref","first-page":"781","DOI":"10.3390\/agronomy9120781","article-title":"Application of artificial neural networks for yield modeling of winter rapeseed based on combined quantitative and qualitative data","volume":"9","author":"Niedba\u0142a","year":"2019","journal-title":"Agronomy"},{"key":"10.1016\/j.compag.2023.107721_b0255","article-title":"Deep learning for crop yield prediction: a systematic literature review","volume":"1\u201326","author":"Oikonomidis","year":"2022","journal-title":"N. Z. J. Crop Hortic. Sci."},{"key":"10.1016\/j.compag.2023.107721_b0260","doi-asserted-by":"crossref","first-page":"971","DOI":"10.1002\/agj2.20595","article-title":"Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture","volume":"113","author":"Olson","year":"2021","journal-title":"J. Agron."},{"key":"10.1016\/j.compag.2023.107721_b0265","article-title":"Early wheat yield estimation at field-level by photosynthetic pigment unmixing using Landsat 8 image series","volume":"1\u201317","author":"Ozcan","year":"2021","journal-title":"Geocarto Int."},{"key":"10.1016\/j.compag.2023.107721_b0270","article-title":"A random forest ranking approach to predict yield in maize with uav-based vegetation spectral indices","volume":"178","author":"Ramos","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107721_b0275","unstructured":"Raschka, S., 2015. Python machine learning. Packt Publishing."},{"key":"10.1016\/j.compag.2023.107721_b0280","doi-asserted-by":"crossref","first-page":"63406","DOI":"10.1109\/ACCESS.2021.3075159","article-title":"A comprehensive review of crop yield prediction using machine learning approaches with special emphasis on palm oil yield prediction","volume":"9","author":"Rashid","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.compag.2023.107721_b0285","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1016\/j.isprsjprs.2021.02.008","article-title":"Field-scale crop yield prediction using multi-temporal WorldView-3 and PlanetScope satellite data and deep learning","volume":"174","author":"Sagan","year":"2021","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2023.107721_b0290","doi-asserted-by":"crossref","DOI":"10.1007\/s12665-018-7686-x","article-title":"Diffuse reflectance spectroscopy for field scale assessment of winter wheat yield","volume":"77","author":"\u0160estak","year":"2018","journal-title":"Environ. Earth Sci."},{"key":"10.1016\/j.compag.2023.107721_b0295","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106036","article-title":"Sequential forward selection and support vector regression in comparison to LASSO regression for spring wheat yield prediction based on UAV imagery","volume":"183","author":"Shafiee","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107721_b0300","doi-asserted-by":"crossref","first-page":"891","DOI":"10.1002\/jsfa.10696","article-title":"Yield prediction with machine learning algorithms and satellite images","volume":"101","author":"Sharifi","year":"2021","journal-title":"J. Sci. Food Agric."},{"key":"10.1016\/j.compag.2023.107721_b0305","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1007\/BF01060893","article-title":"Some suggestions for measuring predictive performance","volume":"9","author":"Sheiner","year":"1981","journal-title":"J. Pharmacokinet. Biopharm."},{"key":"10.1016\/j.compag.2023.107721_b0310","doi-asserted-by":"crossref","first-page":"e97288","DOI":"10.1371\/journal.pone.0097288","article-title":"Determining the most important physiological and agronomic traits contributing to maize grain yield through machine learning algorithms: a new avenue in intelligent agriculture","volume":"9","author":"Shekoofa","year":"2014","journal-title":"PLOS ONE"},{"key":"10.1016\/j.compag.2023.107721_b0315","doi-asserted-by":"crossref","DOI":"10.1214\/10-STS330","article-title":"To explain or to predict?","volume":"25","author":"Shmueli","year":"2010","journal-title":"Statist. Sci."},{"key":"10.1016\/j.compag.2023.107721_b0320","article-title":"A deep learning framework under attention mechanism for wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China","volume":"102","author":"Tian","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.compag.2023.107721_b0325","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105709","article-title":"Crop yield prediction using machine learning: a systematic literature review","volume":"177","author":"van Klompenburg","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2023.107721_b0330","doi-asserted-by":"crossref","DOI":"10.1016\/j.agrformet.2020.108096","article-title":"Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer \u2013 a case study of small farmlands in the South of China","volume":"291","author":"Wan","year":"2020","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2023.107721_b0335","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/s10705-021-10170-5","article-title":"Machine learning-based canola yield prediction for site-specific nitrogen recommendations","volume":"121","author":"Wen","year":"2021","journal-title":"Nutr. Cycl. Agroecosyst."},{"key":"10.1016\/j.compag.2023.107721_b0340","doi-asserted-by":"crossref","first-page":"79","DOI":"10.3354\/cr030079","article-title":"Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance","volume":"30","author":"Willmott","year":"2005","journal-title":"Clim. Res."},{"key":"10.1016\/j.compag.2023.107721_b0345","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.agsy.2017.01.023","article-title":"Big data in smart farming \u2013 a review","volume":"153","author":"Wolfert","year":"2017","journal-title":"Agric. Syst."},{"key":"10.1016\/j.compag.2023.107721_b0350","doi-asserted-by":"crossref","first-page":"1341","DOI":"10.1162\/neco.1996.8.7.1341","article-title":"The lack of a priori distinctions between learning algorithms","volume":"8","author":"Wolpert","year":"1996","journal-title":"Neural Comput."},{"key":"10.1016\/j.compag.2023.107721_b0355","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2017\/1353691","article-title":"Significant remote sensing vegetation indices: a review of developments and applications","volume":"2017","author":"Xue","year":"2017","journal-title":"J. Sens."},{"key":"10.1016\/j.compag.2023.107721_b0360","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.111511","article-title":"A review of vegetation phenological metrics extraction using time-series, multispectral satellite data","volume":"237","author":"Zeng","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2023.107721_b0365","doi-asserted-by":"crossref","DOI":"10.1016\/j.agrformet.2021.108666","article-title":"Integrating satellite-derived climatic and vegetation indices to predict smallholder maize yield using deep learning","volume":"311","author":"Zhang","year":"2021","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2023.107721_b0370","doi-asserted-by":"crossref","first-page":"5173","DOI":"10.1038\/s41598-020-62125-5","article-title":"Using HJ-CCD image and PLS algorithm to estimate the yield of field-grown winter wheat","volume":"10","author":"Zhang","year":"2020","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compag.2023.107721_b0375","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.biosystemseng.2021.01.017","article-title":"Yield estimation of soybean breeding lines under drought stress using unmanned aerial vehicle-based imagery and convolutional neural network","volume":"204","author":"Zhou","year":"2021","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2023.107721_b0380","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1080\/1343943X.2020.1819165","article-title":"Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based multispectral imagery and machine learning approaches","volume":"24","author":"Zhou","year":"2021","journal-title":"Plant Prod. Sci."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923001096?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169923001096?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,9]],"date-time":"2023-09-09T18:50:29Z","timestamp":1694285429000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169923001096"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":76,"alternative-id":["S0168169923001096"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2023.107721","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Machine learning technology for early prediction of grain yield at the field scale: A systematic review","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2023.107721","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107721"}}