{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:46:01Z","timestamp":1732041961651},"reference-count":58,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1016\/j.compag.2022.107425","type":"journal-article","created":{"date-parts":[[2022,10,10]],"date-time":"2022-10-10T22:16:42Z","timestamp":1665440202000},"page":"107425","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["The distributed CERES-Maize model with crop parameters determined through data assimilation assists in regional irrigation schedule optimization"],"prefix":"10.1016","volume":"202","author":[{"given":"Yongqiang","family":"Wang","sequence":"first","affiliation":[]},{"given":"Donghua","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Long","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Hongzheng","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Xuguang","family":"Xing","sequence":"additional","affiliation":[]},{"given":"Xiaoyi","family":"Ma","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2022.107425_b0005","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1016\/j.egyr.2019.08.031","article-title":"Agricultural irrigation scheduling for a crop management system considering water and energy use optimization","volume":"6","author":"Abrishambaf","year":"2020","journal-title":"Energy Rep."},{"key":"10.1016\/j.compag.2022.107425_b0010","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1016\/j.fcr.2017.12.017","article-title":"CERES-Maize and CERES-Sorghum for modeling growth, nitrogen and phosphorus uptake, and soil moisture dynamics in the dry savanna of West Africa","volume":"217","author":"Amouzou","year":"2018","journal-title":"Field Crops Res."},{"key":"10.1016\/j.compag.2022.107425_b0015","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1002\/qj.49705021008","article-title":"Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation","volume":"50","author":"Angstrom","year":"1924","journal-title":"Q. J. R. Meteorolog. Soc."},{"key":"10.1016\/j.compag.2022.107425_b0020","doi-asserted-by":"crossref","first-page":"1160","DOI":"10.1175\/1520-0469(1969)026<1160:UOIHDT>2.0.CO;2","article-title":"Use of incomplete historical data to infer the present state of the atmosphere","volume":"26","author":"Charney","year":"1969","journal-title":"J. Atmos. Sci."},{"key":"10.1016\/j.compag.2022.107425_b0025","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/j.indcrop.2015.08.040","article-title":"Deficit irrigation and biological fertilizer influence on yield and trigonelline production of fenugreek","volume":"77","author":"Dadrasan","year":"2015","journal-title":"Ind. Crops Prod."},{"key":"10.1016\/j.compag.2022.107425_b0030","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1109\/4235.996017","article-title":"A fast and elitist multiobjective genetic algorithm: NSGA-II","volume":"6","author":"Deb","year":"2002","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.compag.2022.107425_b0035","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1007\/BF00939380","article-title":"Shuffled complex evolution approach for effective and efficient global minimization","volume":"76","author":"Duan","year":"1993","journal-title":"J. Optim. Theory Appl."},{"key":"10.1016\/j.compag.2022.107425_b0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.fcr.2021.108103","article-title":"Evapotranspiration partitioning, water use efficiency, and maize yield under different film mulching and nitrogen application in northwest China","volume":"264","author":"Fang","year":"2021","journal-title":"Field Crops Res."},{"key":"10.1016\/j.compag.2022.107425_b0045","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.compag.2019.02.026","article-title":"Predicting wheat grain yield and spatial variability at field scale using a simple regression or a crop model in conjunction with Landsat images","volume":"159","author":"Gaso","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2022.107425_b0050","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/bs.agron.2014.12.001","article-title":"Water-yield relations and water use efficiency of maize under nitrogen fertigation for semiarid environments: experiment and synthesis","volume":"130","author":"Gheysari","year":"2015","journal-title":"Adv. Agron."},{"key":"10.1016\/j.compag.2022.107425_b0055","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/S1161-0301(02)00098-9","article-title":"Wading through a swamp of complete confusion: how to choose a method for estimating soil water retention parameters for crop models","volume":"18","author":"Gijsman","year":"2002","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.compag.2022.107425_b0060","doi-asserted-by":"crossref","DOI":"10.1016\/j.agwat.2020.106575","article-title":"Optimizing irrigation schedule in a large agricultural region under different hydrologic scenarios","volume":"245","author":"Guo","year":"2021","journal-title":"Agric. Water Manag."},{"key":"10.1016\/j.compag.2022.107425_b0065","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1007\/s11119-017-9498-5","article-title":"Integrating remote sensing information with crop model to monitor wheat growth and yield based on simulation zone partitioning","volume":"19","author":"Guo","year":"2018","journal-title":"Precis. Agric."},{"key":"10.1016\/j.compag.2022.107425_b0070","first-page":"1","article-title":"Global high-resolution soil profile database for crop modeling applications","volume":"1","author":"Han","year":"2015","journal-title":"Harvard Dataverse"},{"key":"10.1016\/j.compag.2022.107425_b0075","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.agwat.2019.03.035","article-title":"Spatially distributed crop model based on remote sensing","volume":"218","author":"Han","year":"2019","journal-title":"Agric. Water Manag."},{"key":"10.1016\/j.compag.2022.107425_b0080","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.advwatres.2016.09.011","article-title":"Improving radar rainfall estimation by merging point rainfall measurements within a model combination framework","volume":"97","author":"Hasan","year":"2016","journal-title":"Adv. Water Resour."},{"key":"10.1016\/j.compag.2022.107425_b0085","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.agwat.2012.02.007","article-title":"Identifying irrigation and nitrogen best management practices for sweet corn production on sandy soils using CERES-Maize model","volume":"109","author":"He","year":"2012","journal-title":"Agric. Water Manag."},{"key":"10.1016\/j.compag.2022.107425_b0090","series-title":"Decision support system for agrotechnology transfer (DSSAT) Version 4.5 [CD-ROM]","author":"Hoogenboom","year":"2010"},{"key":"10.1016\/j.compag.2022.107425_b0095","doi-asserted-by":"crossref","first-page":"1348","DOI":"10.3390\/rs13071348","article-title":"A comparison between support vector machine and water cloud model for estimating crop leaf area index","volume":"13","author":"Hosseini","year":"2021","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2022.107425_b0100","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.agrformet.2015.02.001","article-title":"Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model","volume":"204","author":"Huang","year":"2015","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2022.107425_b0105","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.eja.2018.10.008","article-title":"Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST\u2013PROSAIL model","volume":"102","author":"Huang","year":"2019","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.compag.2022.107425_b0110","first-page":"387","article-title":"Studying impact of climate change on wheat yield by using DSSAT and GIS: a case study of Pothwar region, Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability","author":"Jabeen","year":"2017","journal-title":"Springer"},{"key":"10.1016\/j.compag.2022.107425_b0115","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.eja.2016.04.007","article-title":"Improvement of spatially and temporally continuous crop leaf area index by integration of CERES-Maize model and MODIS data","volume":"78","author":"Jin","year":"2016","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.compag.2022.107425_b0120","doi-asserted-by":"crossref","DOI":"10.1016\/j.agwat.2019.105846","article-title":"Estimation of maize yield by assimilating biomass and canopy cover derived from hyperspectral data into the AquaCrop model","volume":"227","author":"Jin","year":"2020","journal-title":"Agric. Water Manag."},{"key":"10.1016\/j.compag.2022.107425_b0125","article-title":"Making large-scale SVM learning practical","author":"Joachims","year":"1998","journal-title":"Technical report."},{"key":"10.1016\/j.compag.2022.107425_b0130","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1016\/S1161-0301(02)00107-7","article-title":"The DSSAT cropping system model","volume":"18","author":"Jones","year":"2003","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.compag.2022.107425_b0135","series-title":"A simulation model of maize growth and development","author":"Jones","year":"1986"},{"key":"10.1016\/j.compag.2022.107425_b0140","doi-asserted-by":"crossref","first-page":"553","DOI":"10.3390\/ijgi10080553","article-title":"FARMs: A Geospatial Crop Modeling and Agricultural Water Management System","volume":"10","author":"Kim","year":"2021","journal-title":"ISPRS Int. J. Geo-Inf."},{"key":"10.1016\/j.compag.2022.107425_b0145","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/j.agsy.2019.03.014","article-title":"A multi-objective approach to water and nutrient efficiency for sustainable agricultural intensification","volume":"173","author":"Kropp","year":"2019","journal-title":"Agric. Syst."},{"key":"10.1016\/j.compag.2022.107425_b0150","doi-asserted-by":"crossref","first-page":"2101","DOI":"10.1080\/01431161.2012.738946","article-title":"Remote sensing of rice crop areas","volume":"34","author":"Kuenzer","year":"2013","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2022.107425_b0155","doi-asserted-by":"crossref","first-page":"2363","DOI":"10.1109\/36.789635","article-title":"Polarimetric SAR speckle filtering and its implication for classification","volume":"37","author":"Lee","year":"1999","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.compag.2022.107425_b0160","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.jhydrol.2017.09.055","article-title":"An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions","volume":"555","author":"Li","year":"2017","journal-title":"J. Hydrol."},{"key":"10.1016\/j.compag.2022.107425_b0165","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.eja.2015.08.006","article-title":"Estimating wheat yield and quality by coupling the DSSAT-CERES model and proximal remote sensing","volume":"71","author":"Li","year":"2015","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.compag.2022.107425_b0170","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1016\/j.agwat.2018.06.029","article-title":"Optimization of irrigation scheduling for spring wheat based on simulation-optimization model under uncertainty","volume":"208","author":"Li","year":"2018","journal-title":"Agric. Water Manag."},{"key":"10.1016\/j.compag.2022.107425_b0175","doi-asserted-by":"crossref","first-page":"2011","DOI":"10.13031\/trans.12341","article-title":"Model-based deficit irrigation of maize in Kansas","volume":"60","author":"Linker","year":"2017","journal-title":"Trans. ASABE"},{"key":"10.1016\/j.compag.2022.107425_b0180","doi-asserted-by":"crossref","DOI":"10.1016\/j.agwat.2021.107084","article-title":"Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially distributed crop model","volume":"256","author":"Liu","year":"2021","journal-title":"Agric. Water Manag."},{"key":"10.1016\/j.compag.2022.107425_b0185","doi-asserted-by":"crossref","first-page":"298","DOI":"10.1016\/j.agwat.2018.10.022","article-title":"DSSAT-CERES-maize modelling to improve irrigation and nitrogen management practices under Mediterranean conditions","volume":"213","author":"Malik","year":"2019","journal-title":"Agric. Water Manag."},{"key":"10.1016\/j.compag.2022.107425_b0190","article-title":"An investigation of inversion methodologies to retrieve the leaf area index of corn from C-band SAR data","volume":"82","author":"Mandal","year":"2019","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.compag.2022.107425_b0195","doi-asserted-by":"crossref","first-page":"7694","DOI":"10.3390\/su12187694","article-title":"Comparison of Approaches for Irrigation Scheduling Using AquaCrop and NSGA-III Models under Climate Uncertainty","volume":"12","author":"Mwiya","year":"2020","journal-title":"Sustainability"},{"key":"10.1016\/j.compag.2022.107425_b0200","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1080\/01431160412331269698","article-title":"Random forest classifier for remote sensing classification","volume":"26","author":"Pal","year":"2005","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2022.107425_b0205","first-page":"727","article-title":"X-means: Extending k-means with efficient estimation of the number of clusters","author":"Pelleg","year":"2000","journal-title":"Icml"},{"key":"10.1016\/j.compag.2022.107425_b0210","doi-asserted-by":"crossref","first-page":"2967","DOI":"10.3390\/rs12182967","article-title":"Combining high-resolution remote sensing products with a crop model to estimate carbon and water budget components: application to sunflower","volume":"12","author":"Pique","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2022.107425_b0215","doi-asserted-by":"crossref","first-page":"109","DOI":"10.3390\/agronomy9020109","article-title":"Optimizing the sowing date and irrigation strategy to improve maize yield by using CERES (crop estimation through resource and environment synthesis)-maize model","volume":"9","author":"Saddique","year":"2019","journal-title":"Agronomy"},{"key":"10.1016\/j.compag.2022.107425_b0220","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1080\/00401706.1999.10485594","article-title":"A quantitative model-independent method for global sensitivity analysis of model output","volume":"41","author":"Saltelli","year":"1999","journal-title":"Technometrics"},{"key":"10.1016\/j.compag.2022.107425_b0225","doi-asserted-by":"crossref","unstructured":"Saxton, K., Rawls, W.J., Romberger, J.S., Papendick, R., 1986. Estimating generalized soil-water characteristics from texture.","DOI":"10.2136\/sssaj1986.03615995005000040054x"},{"key":"10.1016\/j.compag.2022.107425_b0230","doi-asserted-by":"crossref","first-page":"789","DOI":"10.13031\/trans.13654","article-title":"Optimization of Sowing Date, Irrigation, And Nitrogen Management Of Summer Maize Using the DSSAT-CERES-Maize model in the Guanzhong Plain, China","volume":"63","author":"Shen","year":"2020","journal-title":"Trans. ASABE"},{"key":"10.1016\/j.compag.2022.107425_b0235","first-page":"229","article-title":"Fonctions de repartition an dimensions et leurs marges","volume":"8","author":"Sklar","year":"1959","journal-title":"Publ. Inst. Statist. Univ. Paris"},{"key":"10.1016\/j.compag.2022.107425_b0240","doi-asserted-by":"crossref","first-page":"1139","DOI":"10.1016\/j.agwat.2009.06.004","article-title":"Effect of precipitation change on water balance and WUE of the winter wheat\u2013summer maize rotation in the North China Plain","volume":"97","author":"Sun","year":"2010","journal-title":"Agric. Water Manag."},{"key":"10.1016\/j.compag.2022.107425_b0245","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.jhydrol.2015.11.028","article-title":"Sustainability assessment of regional water resources under the DPSIR framework","volume":"532","author":"Sun","year":"2016","journal-title":"J. Hydrol."},{"key":"10.1016\/j.compag.2022.107425_b0250","unstructured":"Shaanxi Provincial Market Supervision and Administration Bureau, 2020. Water use quota of Shaanxi Province. Standards Press of Shaanxi DB 61\/T 943-2020."},{"key":"10.1016\/j.compag.2022.107425_b0255","series-title":"Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE","first-page":"1","article-title":"The sentinel-1 toolbox","author":"Veci","year":"2014"},{"key":"10.1016\/j.compag.2022.107425_b0260","first-page":"1","article-title":"Global sensitivity analysis and evaluation of the DSSAT model for summer maize (Zea mays L.) under irrigation and fertilizer stress","author":"Wang","year":"2021","journal-title":"Int. J. Plant Prod."},{"key":"10.1016\/j.compag.2022.107425_b0265","doi-asserted-by":"crossref","DOI":"10.1016\/j.agwat.2021.106752","article-title":"Distributed AquaCrop simulation-nonlinear multi-objective dependent-chance programming for irrigation water resources management under uncertainty","volume":"247","author":"Wang","year":"2021","journal-title":"Agric. Water Manag."},{"key":"10.1016\/j.compag.2022.107425_b0270","doi-asserted-by":"crossref","unstructured":"De Wit, A.d., Van Diepen, C., 2007. Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts. Agricultural and Forest Meteorology 146, 38-56.","DOI":"10.1016\/j.agrformet.2007.05.004"},{"key":"10.1016\/j.compag.2022.107425_b0275","article-title":"Estimating winter wheat yield by assimilation of remote sensing data with a four-dimensional variation algorithm considering anisotropic background error and time window","volume":"301","author":"Wu","year":"2021","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2022.107425_b0280","doi-asserted-by":"crossref","first-page":"309","DOI":"10.3390\/rs9040309","article-title":"Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing: Analysis of RF, ANN, and SVM regression models","volume":"9","author":"Yuan","year":"2017","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2022.107425_b0285","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1007\/s00271-002-0059-x","article-title":"Conserving groundwater for irrigation in the North China Plain","volume":"21","author":"Zhang","year":"2003","journal-title":"Irrig. Sci."},{"key":"10.1016\/j.compag.2022.107425_b0290","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/s10333-016-0540-4","article-title":"Research on the joint probability distribution of rainfall and reference crop evapotranspiration","volume":"15","author":"Zhang","year":"2017","journal-title":"Paddy Water Environ."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169922007335?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169922007335?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,23]],"date-time":"2023-04-23T12:59:16Z","timestamp":1682254756000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169922007335"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":58,"alternative-id":["S0168169922007335"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2022.107425","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2022,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"The distributed CERES-Maize model with crop parameters determined through data assimilation assists in regional irrigation schedule optimization","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2022.107425","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107425"}}