{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:56:31Z","timestamp":1726851391960},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2022,11]]},"DOI":"10.1016\/j.compag.2022.107370","type":"journal-article","created":{"date-parts":[[2022,10,5]],"date-time":"2022-10-05T03:20:44Z","timestamp":1664940044000},"page":"107370","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Machine learning methods for efficient and automated in situ monitoring of peach flowering phenology"],"prefix":"10.1016","volume":"202","author":[{"given":"Yihang","family":"Zhu","sequence":"first","affiliation":[]},{"given":"Miaojin","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Qing","family":"Gu","sequence":"additional","affiliation":[]},{"given":"Yiying","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Xiaobin","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Qinan","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Xianbin","family":"Gu","sequence":"additional","affiliation":[]},{"given":"Kefeng","family":"Zheng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2022.107370_b0005","doi-asserted-by":"crossref","first-page":"100458","DOI":"10.1016\/j.fpsl.2019.100458","article-title":"Evaluation of a predictive model to configure an active packaging with moisture adsorption for fresh tomato","volume":"23","author":"Agudelo-Rodr\u00edguez","year":"2020","journal-title":"Food Packag. Shelf Life"},{"key":"10.1016\/j.compag.2022.107370_b0010","first-page":"189","article-title":"Escala BBCH para la descripci\u00f3n de los estadios fenol\u00f3gicos del desarrollo de los agrios (G\u00e9n. Citrus)","volume":"332","author":"Agust\u00ed","year":"1995","journal-title":"Levante Agr\u00edcola"},{"issue":"5","key":"10.1016\/j.compag.2022.107370_b0015","doi-asserted-by":"crossref","DOI":"10.1007\/s13593-017-0443-9","article-title":"Heat stress effects and management in wheat. A review","volume":"37","author":"Akter","year":"2017","journal-title":"Agron. Sustain. Dev."},{"key":"10.1016\/j.compag.2022.107370_b0020","first-page":"51","article-title":"Simple remote sensing detection of Corymbia calophylla flowers using common 3 \u2013band imaging sensors","volume":"11","author":"Campbell","year":"2018","journal-title":"Remote Sens. Appl.: Soc. Environ."},{"issue":"6","key":"10.1016\/j.compag.2022.107370_b0025","doi-asserted-by":"crossref","first-page":"949","DOI":"10.1007\/s00267-008-9086-6","article-title":"Monitoring Plant Phenology Using Digital Repeat Photography","volume":"41","author":"Crimmins","year":"2008","journal-title":"Environ. Manage."},{"issue":"7","key":"10.1016\/j.compag.2022.107370_b0030","doi-asserted-by":"crossref","first-page":"1297","DOI":"10.1007\/s00484-018-1534-2","article-title":"Machine learning modeling of plant phenology based on coupling satellite and gridded meteorological dataset","volume":"62","author":"Czernecki","year":"2018","journal-title":"Int. J. Biometeorol."},{"issue":"5","key":"10.1016\/j.compag.2022.107370_b0035","doi-asserted-by":"crossref","first-page":"559","DOI":"10.3390\/plants9050559","article-title":"Weed Classification for Site-Specific Weed Management Using an Automated Stereo Computer-Vision Machine-Learning System in Rice Fields","volume":"9","author":"Dadashzadeh","year":"2020","journal-title":"Plants"},{"key":"10.1016\/j.compag.2022.107370_b0040","doi-asserted-by":"crossref","first-page":"111660","DOI":"10.1016\/j.rse.2020.111660","article-title":"Detecting flowering phenology in oil seed rape parcels with Sentinel-1 and -2 time series","volume":"239","author":"d\u2019Andrimont","year":"2020","journal-title":"Rem. Sens. Environ."},{"issue":"5","key":"10.1016\/j.compag.2022.107370_b0045","doi-asserted-by":"crossref","first-page":"plx042","DOI":"10.1093\/aobpla\/plx042","article-title":"The phyllochron of well-watered and water deficit mature peach trees varies with shoot type and vigour","volume":"9","author":"Davidson","year":"2017","journal-title":"AoB Plants"},{"key":"10.1016\/j.compag.2022.107370_b0050","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.compind.2018.03.010","article-title":"Apple flower detection using deep convolutional networks","volume":"99","author":"Dias","year":"2018","journal-title":"Comput. Ind."},{"key":"10.1016\/j.compag.2022.107370_b0055","doi-asserted-by":"crossref","first-page":"112197","DOI":"10.1016\/j.rse.2020.112197","article-title":"Satellite prediction of forest flowering phenology","volume":"255","author":"Dixon","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2022.107370_b0060","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.scienta.2015.05.027","article-title":"Flower development in sweet cherry framed in the BBCH scale","volume":"192","author":"Fad\u00f3n","year":"2015","journal-title":"Sci. Hortic.-Amsterdam"},{"issue":"7","key":"10.1016\/j.compag.2022.107370_b0065","doi-asserted-by":"crossref","first-page":"2410","DOI":"10.1111\/gcb.14633","article-title":"Daylength helps temperate deciduous trees to leaf-out at the optimal time","volume":"25","author":"Fu","year":"2019","journal-title":"Global Change Biol."},{"key":"10.1016\/j.compag.2022.107370_b0070","doi-asserted-by":"crossref","first-page":"3014","DOI":"10.1111\/j.1365-2486.2010.02164.x","article-title":"Public Internet-connected cameras used as a cross-continental ground-based plant phenology monitoring system","volume":"16","author":"Graham","year":"2010","journal-title":"Global Change Biol."},{"key":"10.1016\/j.compag.2022.107370_b0075","doi-asserted-by":"crossref","first-page":"105066","DOI":"10.1016\/j.compag.2019.105066","article-title":"Early detection of tomato spotted wilt virus infection in tobacco using the hyperspectral imaging technique and machine learning algorithms","volume":"167","author":"Gu","year":"2019","journal-title":"Comput. Electron. Agr."},{"issue":"1","key":"10.1016\/j.compag.2022.107370_b0080","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1186\/s13007-015-0047-9","article-title":"Automated characterization of flowering dynamics in rice using field-acquired time-series RGB images","volume":"11","author":"Guo","year":"2015","journal-title":"Plant Methods"},{"key":"10.1016\/j.compag.2022.107370_b0085","doi-asserted-by":"crossref","first-page":"106935","DOI":"10.1016\/j.ecolind.2020.106935","article-title":"Integrated phenology and climate in rice yields prediction using machine learning methods","volume":"120","author":"Guo","year":"2021","journal-title":"Ecol. Indic."},{"issue":"1","key":"10.1016\/j.compag.2022.107370_b0090","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1007\/s11119-020-09734-2","article-title":"Real-time detection of rice phenology through convolutional neural network using handheld camera images","volume":"22","author":"Han","year":"2021","journal-title":"Precis. Agric."},{"issue":"3","key":"10.1016\/j.compag.2022.107370_b0095","doi-asserted-by":"crossref","first-page":"536","DOI":"10.1016\/j.scienta.2011.07.027","article-title":"Phenological growth stages of mango (Mangifera indica L.) according to the BBCH scale","volume":"130","author":"Hern\u00e1ndez Delgado","year":"2011","journal-title":"Sci. Hortic.-Amsterdam"},{"key":"10.1016\/j.compag.2022.107370_b0100","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.plantsci.2015.01.008","article-title":"Detection of QTL for metabolic and agronomic traits in wheat with adjustments for variation at genetic loci that affect plant phenology","volume":"233","author":"Hill","year":"2015","journal-title":"Plant Sci."},{"key":"10.1016\/j.compag.2022.107370_b0105","unstructured":"Hulya, Y., 2015. Phenology monitoring of agricultural plants using texture analysis. 2015 Fourth International Conference on Agro-Geoinformatics (Agro-geoinformatics). 10.1109\/Agro-Geoinformatics.2015.7248114."},{"key":"10.1016\/j.compag.2022.107370_b0110","unstructured":"Hulya, Y., 2017. Plant phenology recognition using deep learning: Deep-Pheno. In: 2017 6th International Conference on Agro-Geoinformatics. 10.1109\/Agro-Geoinformatics.2017.8046996."},{"issue":"11","key":"10.1016\/j.compag.2022.107370_b0115","doi-asserted-by":"crossref","first-page":"2284","DOI":"10.1002\/ece3.1503","article-title":"Does flower phenology mirror the slowdown of global warming?","volume":"5","author":"Jochner","year":"2015","journal-title":"Ecol. Evol."},{"issue":"4","key":"10.1016\/j.compag.2022.107370_b0120","doi-asserted-by":"crossref","first-page":"395","DOI":"10.3390\/f12040395","article-title":"Assessment of Machine Learning Algorithms for Modeling the Spatial Distribution of Bark Beetle Infestation","volume":"12","author":"Kore\u0148","year":"2021","journal-title":"Forests"},{"key":"10.1016\/j.compag.2022.107370_b0125","unstructured":"Kuhn, M., 2015. Caret: classification and regression training. Astrophysics Source Code Library: ascl-1505."},{"issue":"11","key":"10.1016\/j.compag.2022.107370_b0130","doi-asserted-by":"crossref","DOI":"10.18637\/jss.v036.i11","article-title":"Feature Selection with the Boruta Package","volume":"36","author":"Kursa","year":"2010","journal-title":"J. Stat. Softw."},{"key":"10.1016\/j.compag.2022.107370_b0135","doi-asserted-by":"crossref","first-page":"108009","DOI":"10.1016\/j.agrformet.2020.108009","article-title":"Chilling and heat requirement of peach cultivars and changes in chilling accumulation spectrums based on 100-year records in Republic of Korea","volume":"288\u2013289","author":"Kwon","year":"2020","journal-title":"Agr. Forest Meteorol."},{"key":"10.1016\/j.compag.2022.107370_b0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.scienta.2021.109958","article-title":"Efficient monitoring of phenology in chestnuts","volume":"281","author":"Larue","year":"2021","journal-title":"Sci. Hortic.-Amsterdam"},{"issue":"1","key":"10.1016\/j.compag.2022.107370_b0145","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1111\/gcb.12360","article-title":"Chilling outweighs photoperiod in preventing precocious spring development","volume":"20","author":"Laube","year":"2014","journal-title":"Global Change Biol."},{"key":"10.1016\/j.compag.2022.107370_b0150","doi-asserted-by":"crossref","first-page":"105103","DOI":"10.1016\/j.compag.2019.105103","article-title":"A framework for predicting soft-fruit yields and phenology using embedded, networked microsensors, coupled weather models and machine-learning techniques","volume":"168","author":"Lee","year":"2020","journal-title":"Comput. Electron. Agr."},{"issue":"1","key":"10.1016\/j.compag.2022.107370_b0155","first-page":"65","article-title":"Sweet Cherry (Prunus avium L.) and Peach (Prunus persica L.) Phenological Growth Stages According to BBCH Scale. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca","volume":"74","author":"Lisandru","year":"2017","journal-title":"Horticulture"},{"key":"10.1016\/j.compag.2022.107370_b0160","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.scienta.2014.07.042","article-title":"Comparison of methods for estimation of chilling and heat requirements of nectarine and peach genotypes for flowering","volume":"177","author":"Mauli\u00f3n","year":"2014","journal-title":"Sci. Hortic.-Amsterdam"},{"key":"10.1016\/j.compag.2022.107370_b0165","article-title":"Phenological Growth Stages: Mono- and Dicotyledonous Plants","volume":"269\u2013283","author":"Meier","year":"2001","journal-title":"Dordrecht, Springer, Netherlands"},{"issue":"7","key":"10.1016\/j.compag.2022.107370_b0170","first-page":"141","article-title":"Phanologische Entwicklungsstadien des Kernobstes (Malus domestica Borkh. und Pyrus communis L.), des Steinobstes (Prunus-Arten), der Johannisbeere Ribes-Arten) und der Erdbeere (Fragaria x ananassa","volume":"46","author":"Meier","year":"1994","journal-title":"Nachrichtenblatt des Deutschen Pflanzenschutzdienstes"},{"key":"10.1016\/j.compag.2022.107370_b0175","article-title":"Machine Learning for olive phenology prediction and base temperature optimisation","author":"Oses","year":"2020","journal-title":"IEEE"},{"key":"10.1016\/j.compag.2022.107370_b0180","doi-asserted-by":"crossref","unstructured":"Oussama, H. M., C. Wenceslao, N. Emilio, A. Isabel, V. G. Yelitza, M. T. Luis, V. Juan, M. A. Jose and D. C. R. Maria. 2008. Growth Pattern and Phenological Stages of Early-maturing Peach Trees Under a Mediterranean Climate. HortScience horts 43 (6): 1813-1818. 10.21273\/HORTSCI.43.6.1813.","DOI":"10.21273\/HORTSCI.43.6.1813"},{"key":"10.1016\/j.compag.2022.107370_b0185","doi-asserted-by":"crossref","first-page":"122537","DOI":"10.1016\/j.physa.2019.122537","article-title":"Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms","volume":"535","author":"Ozguven","year":"2019","journal-title":"Physica A"},{"issue":"3","key":"10.1016\/j.compag.2022.107370_b0190","doi-asserted-by":"crossref","first-page":"428","DOI":"10.3390\/agronomy10030428","article-title":"Development of Peach Flower Buds under Low Winter Chilling Conditions","volume":"10","author":"Penso","year":"2020","journal-title":"Agronomy"},{"issue":"6","key":"10.1016\/j.compag.2022.107370_b0195","doi-asserted-by":"crossref","first-page":"1922","DOI":"10.1111\/gcb.14619","article-title":"Plant phenology and global climate change: Current progresses and challenges","volume":"25","author":"Piao","year":"2019","journal-title":"Global Change Biol."},{"issue":"4","key":"10.1016\/j.compag.2022.107370_b0200","doi-asserted-by":"crossref","first-page":"41","DOI":"10.3390\/horticulturae4040041","article-title":"Monitoring Dormancy Transition in Almond [Prunus Dulcis (Miller) Webb] during Cold and Warm Mediterranean Seasons through the Analysis of a DAM (Dormancy-Associated MADS-Box) Gene","volume":"4","author":"Prudencio","year":"2018","journal-title":"Horticulturae"},{"issue":"4","key":"10.1016\/j.compag.2022.107370_b0205","doi-asserted-by":"crossref","first-page":"331","DOI":"10.21273\/HORTSCI.9.4.331","article-title":"A model for estimating the completion of rest for \u201cRedhaven\u201d and\u201c Elberta\u201d peach trees","volume":"9","author":"Richardson","year":"1974","journal-title":"HortScience"},{"key":"10.1016\/j.compag.2022.107370_b0210","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1016\/j.scienta.2018.12.024","article-title":"Codification and description of almond (Prunus dulcis) vegetative and reproductive phenology according to the extended BBCH scale","volume":"247","author":"Sakar","year":"2019","journal-title":"Sci. Hortic.-Amsterdam"},{"key":"10.1016\/j.compag.2022.107370_b0215","article-title":"Recent advancements to study flowering time in almond and other Prunus species","volume":"5","author":"S\u00e1nchez-P\u00e9rez","year":"2014","journal-title":"Front. Plant Sci."},{"key":"10.1016\/j.compag.2022.107370_b0220","unstructured":"So, Y., Tetsu, O., Kanta, Y., Seiichi, O., Jun, K., Takenao, O., Takeshi, Y., Noriyoki, M., Hiroyuki, T., 2017. A hybrid machine learning approach to automatic plant phenotyping for smart agriculture. In: 2017 International Joint Conference on Neural Networks (IJCNN). 10.1109\/IJCNN.2017.7966067."},{"issue":"8","key":"10.1016\/j.compag.2022.107370_b0225","doi-asserted-by":"crossref","first-page":"10444","DOI":"10.3390\/rs70810444","article-title":"Consistency between In Situ, Model-Derived and High-Resolution-Image-Based Soil Temperature Endmembers: Towards a Robust Data-Based Model for Multi-Resolution Monitoring of Crop Evapotranspiration","volume":"7","author":"Stefan","year":"2015","journal-title":"Remote Sens.-Basel"},{"key":"10.1016\/j.compag.2022.107370_b0230","doi-asserted-by":"crossref","DOI":"10.3389\/fpls.2018.00517","article-title":"The Plant Phenology Ontology: A New Informatics Resource for Large-Scale Integration of Plant Phenology Data","volume":"9","author":"Stucky","year":"2018","journal-title":"Front. Plant Sci."},{"key":"10.1016\/j.compag.2022.107370_b0235","doi-asserted-by":"crossref","first-page":"106150","DOI":"10.1016\/j.compag.2021.106150","article-title":"Apple, peach, and pear flower detection using semantic segmentation network and shape constraint level set","volume":"185","author":"Sun","year":"2021","journal-title":"Comput. Electron. Agr."},{"key":"10.1016\/j.compag.2022.107370_b0240","doi-asserted-by":"crossref","first-page":"108327","DOI":"10.1016\/j.agrformet.2021.108327","article-title":"Shifts in the thermal niche of fruit trees under climate change: The case of peach cultivation in France","volume":"300","author":"Vanalli","year":"2021","journal-title":"Agr. Forest Meteorol."},{"issue":"1","key":"10.1016\/j.compag.2022.107370_b0245","first-page":"1","article-title":"Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling","volume":"11","author":"Wang","year":"2020","journal-title":"Nat. Commun."},{"key":"10.1016\/j.compag.2022.107370_b0250","doi-asserted-by":"crossref","first-page":"107938","DOI":"10.1016\/j.agrformet.2020.107938","article-title":"A near real-time deep learning approach for detecting rice phenology based on UAV images","volume":"287","author":"Yang","year":"2020","journal-title":"Agr. Forest Meteorol."},{"issue":"3","key":"10.1016\/j.compag.2022.107370_b0255","doi-asserted-by":"crossref","first-page":"331","DOI":"10.3390\/rs13030331","article-title":"Predicting plant growth from time-series data using deep learning","volume":"13","author":"Yasrab","year":"2021","journal-title":"Remote Sens.-Basel"},{"key":"10.1016\/j.compag.2022.107370_b0260","doi-asserted-by":"crossref","first-page":"859290","DOI":"10.3389\/fpls.2022.859290","article-title":"Quantitative Extraction and Evaluation of Tomato Fruit Phenotypes Based on Image Recognition","volume":"13","author":"Zhu","year":"2022","journal-title":"Front. Plant Sci."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169922006780?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169922006780?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,28]],"date-time":"2023-11-28T12:54:35Z","timestamp":1701176075000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169922006780"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11]]},"references-count":52,"alternative-id":["S0168169922006780"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2022.107370","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2022,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Machine learning methods for efficient and automated in situ monitoring of peach flowering phenology","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2022.107370","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107370"}}