{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T06:48:11Z","timestamp":1726469291588},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,29]],"date-time":"2023-08-29T00:00:00Z","timestamp":1693267200000},"content-version":"am","delay-in-days":332,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1016\/j.compag.2022.107272","type":"journal-article","created":{"date-parts":[[2022,8,29]],"date-time":"2022-08-29T06:03:45Z","timestamp":1661753025000},"page":"107272","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Using dorsal surface for individual identification of dairy calves through 3D deep learning algorithms"],"prefix":"10.1016","volume":"201","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5141-6175","authenticated-orcid":false,"given":"Rafael E.P.","family":"Ferreira","sequence":"first","affiliation":[]},{"given":"Tiago","family":"Bresolin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9172-6461","authenticated-orcid":false,"given":"Guilherme J.M.","family":"Rosa","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9849-7358","authenticated-orcid":false,"given":"Jo\u00e3o R.R.","family":"D\u00f3rea","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2015","series-title":"TensorFlow: Large-scale machine learning on heterogeneous systems","author":"Abadi","key":"10.1016\/j.compag.2022.107272_b1"},{"issue":"4","key":"10.1016\/j.compag.2022.107272_b2","doi-asserted-by":"crossref","first-page":"1624","DOI":"10.3390\/rs5041624","article-title":"Segmentation based classification of 3D urban point clouds: A super-voxel based approach with evaluation","volume":"5","author":"Aijazi","year":"2013","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2022.107272_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106133","article-title":"Visual identification of individual holstein-friesian cattle via deep metric learning","volume":"185","author":"Andrew","year":"2021","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2022.107272_b4","doi-asserted-by":"crossref","unstructured":"Andrew, W., Greatwood, C., Burghardt, T., 2017. Visual localisation and individual identification of Holstein Friesian cattle via deep learning. In: Proceedings of the IEEE International Conference on Computer Vision Workshops. pp. 2850\u20132859.","DOI":"10.1109\/ICCVW.2017.336"},{"key":"10.1016\/j.compag.2022.107272_b5","series-title":"2016 IEEE International Conference on Image Processing (ICIP)","first-page":"484","article-title":"Automatic individual holstein friesian cattle identification via selective local coat pattern matching in rgb-d imagery","author":"Andrew","year":"2016"},{"key":"10.1016\/j.compag.2022.107272_b6","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1016\/j.compag.2016.03.014","article-title":"From classical methods to animal biometrics: A review on cattle identification and tracking","volume":"123","author":"Awad","year":"2016","journal-title":"Comput. Electron. Agric."},{"issue":"3","key":"10.1016\/j.compag.2022.107272_b7","article-title":"Image-based individual cow recognition using body patterns","volume":"11","author":"Bello","year":"2020","journal-title":"Image"},{"key":"10.1016\/j.compag.2022.107272_b8","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.tele.2018.11.006","article-title":"A systematic literature review of blockchain-based applications: Current status, classification and open issues","volume":"36","author":"Casino","year":"2019","journal-title":"Telemat. Inform."},{"key":"10.1016\/j.compag.2022.107272_b9","series-title":"European Conference on Computer Vision","first-page":"279","article-title":"Improving 3d object detection through progressive population based augmentation","author":"Cheng","year":"2020"},{"issue":"1","key":"10.1016\/j.compag.2022.107272_b10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4142\/jvs.2014.15.1.1","article-title":"An overview of calf diarrhea-infectious etiology, diagnosis, and intervention","volume":"15","author":"Cho","year":"2014","journal-title":"J. Vet. Sci."},{"year":"2017","series-title":"Xception: Deep learning with depthwise separable convolutions","author":"Chollet","key":"10.1016\/j.compag.2022.107272_b11"},{"year":"2015","series-title":"Keras","author":"Chollet","key":"10.1016\/j.compag.2022.107272_b12"},{"key":"10.1016\/j.compag.2022.107272_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.livsci.2019.103904","article-title":"Automated computer vision system to predict body weight and average daily gain in beef cattle during growing and finishing phases","volume":"232","author":"Cominotte","year":"2020","journal-title":"Livestock Sci."},{"key":"10.1016\/j.compag.2022.107272_b14","series-title":"CVPR09","article-title":"ImageNet: A large-scale hierarchical image database","author":"Deng","year":"2009"},{"year":"2015","series-title":"Lasagne: First release","author":"Dieleman","key":"10.1016\/j.compag.2022.107272_b15"},{"issue":"8","key":"10.1016\/j.compag.2022.107272_b16","doi-asserted-by":"crossref","first-page":"6164","DOI":"10.3168\/jds.2016-12466","article-title":"Use of milk fatty acids to estimate plasma nonesterified fatty acid concentrations as an indicator of animal energy balance","volume":"100","author":"D\u00f3rea","year":"2017","journal-title":"J. Dairy Sci."},{"key":"10.1016\/j.compag.2022.107272_b17","doi-asserted-by":"crossref","first-page":"174","DOI":"10.21423\/bovine-vol33no2p174-178","article-title":"The cost of respiratory diseases in dairy heifer calves","author":"Esslemont","year":"1999","journal-title":"Bov. Pract."},{"key":"10.1016\/j.compag.2022.107272_b18","doi-asserted-by":"crossref","first-page":"800","DOI":"10.3389\/fvets.2020.551269","article-title":"Image analysis and computer vision applications in animal sciences: an overview","volume":"7","author":"Fernandes","year":"2020","journal-title":"Front. Vet. Sci."},{"key":"10.1016\/j.compag.2022.107272_b19","doi-asserted-by":"crossref","first-page":"57566","DOI":"10.1109\/ACCESS.2020.2982196","article-title":"A review on deep learning approaches for 3D data representations in retrieval and classifications","volume":"8","author":"Gezawa","year":"2020","journal-title":"IEEE Access"},{"year":"2020","series-title":"Quantifying data augmentation for lidar based 3d object detection","author":"Hahner","key":"10.1016\/j.compag.2022.107272_b20"},{"key":"10.1016\/j.compag.2022.107272_b21","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.compind.2018.02.016","article-title":"Towards on-farm pig face recognition using convolutional neural networks","volume":"98","author":"Hansen","year":"2018","journal-title":"Comput. Ind."},{"year":"2018","series-title":"Mask R-CNN","author":"He","key":"10.1016\/j.compag.2022.107272_b22"},{"year":"2012","series-title":"Neural networks for machine learning lecture 6a overview of mini-batch gradient descent","author":"Hinton","key":"10.1016\/j.compag.2022.107272_b23"},{"issue":"2\u20133","key":"10.1016\/j.compag.2022.107272_b24","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/0167-5877(90)90006-4","article-title":"The national animal health monitoring system in Michigan. III. Cost estimates of selected dairy cattle diseases","volume":"8","author":"Kaneene","year":"1990","journal-title":"Prevent. Vet. Med."},{"year":"2014","series-title":"Adam: A method for stochastic optimization","author":"Kingma","key":"10.1016\/j.compag.2022.107272_b25"},{"key":"10.1016\/j.compag.2022.107272_b26","doi-asserted-by":"crossref","first-page":"193907","DOI":"10.1109\/ACCESS.2020.3031549","article-title":"Contrastive representation learning: A framework and review","volume":"8","author":"Le-Khac","year":"2020","journal-title":"IEEE Access"},{"issue":"7553","key":"10.1016\/j.compag.2022.107272_b27","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"year":"2014","series-title":"Network in network","author":"Lin","key":"10.1016\/j.compag.2022.107272_b28"},{"issue":"9","key":"10.1016\/j.compag.2022.107272_b29","doi-asserted-by":"crossref","first-page":"1588","DOI":"10.1017\/S1751731110000650","article-title":"Dairy calf housing systems across Europe and risk for calf infectious diseases","volume":"4","author":"Marc\u00e9","year":"2010","journal-title":"Animal"},{"key":"10.1016\/j.compag.2022.107272_b30","series-title":"IROS","article-title":"VoxNet: A 3D convolutional neural network for real-time object recognition","author":"Maturana","year":"2015"},{"key":"10.1016\/j.compag.2022.107272_b31","series-title":"Proceedings of the 27th International Conference on International Conference on Machine Learning","first-page":"807","article-title":"Rectified linear units improve restricted Boltzmann machines","author":"Nair","year":"2010"},{"key":"10.1016\/j.compag.2022.107272_b32","series-title":"Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271)","first-page":"3","article-title":"Constructing virtual worlds using dense stereo","author":"Narayanan","year":"1998"},{"key":"10.1016\/j.compag.2022.107272_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2019.104944","article-title":"RGB-D video-based individual identification of dairy cows using gait and texture analyses","volume":"165","author":"Okura","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2022.107272_b34","series-title":"Science and Information Conference","first-page":"128","article-title":"Deep learning vs. traditional computer vision","author":"O\u2019Mahony","year":"2019"},{"issue":"5","key":"10.1016\/j.compag.2022.107272_b35","doi-asserted-by":"crossref","first-page":"947","DOI":"10.1109\/TPAMI.2010.14","article-title":"Age-invariant face recognition","volume":"32","author":"Park","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"year":"2017","series-title":"The effectiveness of data augmentation in image classification using deep learning","author":"Perez","key":"10.1016\/j.compag.2022.107272_b36"},{"issue":"3","key":"10.1016\/j.compag.2022.107272_b37","doi-asserted-by":"crossref","first-page":"944","DOI":"10.3390\/s21030944","article-title":"A systematic comparison of depth map representations for face recognition","volume":"21","author":"Pini","year":"2021","journal-title":"Sensors"},{"year":"2016","series-title":"PointNet: Deep learning on point sets for 3D classification and segmentation","author":"Qi","key":"10.1016\/j.compag.2022.107272_b38"},{"issue":"1","key":"10.1016\/j.compag.2022.107272_b39","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/S0893-6080(98)00116-6","article-title":"On the momentum term in gradient descent learning algorithms","volume":"12","author":"Qian","year":"1999","journal-title":"Neural Netw."},{"key":"10.1016\/j.compag.2022.107272_b40","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1214\/aoms\/1177729586","article-title":"A stochastic approximation method","author":"Robbins","year":"1951","journal-title":"Ann. Math. Stat."},{"issue":"424","key":"10.1016\/j.compag.2022.107272_b41","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1080\/01621459.1993.10476408","article-title":"Alternatives to the median absolute deviation","volume":"88","author":"Rousseeuw","year":"1993","journal-title":"J. Amer. Statist. Assoc."},{"key":"10.1016\/j.compag.2022.107272_b42","series-title":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR\u201906), Vol. 1","first-page":"519","article-title":"A comparison and evaluation of multi-view stereo reconstruction algorithms","author":"Seitz","year":"2006"},{"year":"2009","series-title":"Active learning literature survey","author":"Settles","key":"10.1016\/j.compag.2022.107272_b43"},{"year":"2014","series-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","key":"10.1016\/j.compag.2022.107272_b44"},{"key":"10.1016\/j.compag.2022.107272_b45","first-page":"445","article-title":"Pointnet for the automatic classification of aerial point clouds","author":"Soil\u00e1n\u00a0Rodr\u00edguez","year":"2019","journal-title":"ISPRS Ann. Photogramm. Rem. Sens. Spat. Inf. Sci."},{"key":"10.1016\/j.compag.2022.107272_b46","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1\u20139.","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"10.1016\/j.compag.2022.107272_b47","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2818\u20132826.","DOI":"10.1109\/CVPR.2016.308"},{"year":"2016","series-title":"Theano: A python framework for fast computation of mathematical expressions","key":"10.1016\/j.compag.2022.107272_b48"},{"key":"10.1016\/j.compag.2022.107272_b49","doi-asserted-by":"crossref","DOI":"10.1155\/2018\/7068349","article-title":"Deep learning for computer vision: A brief review","volume":"2018","author":"Voulodimos","year":"2018","journal-title":"Comput. Intell. Neurosci."},{"issue":"2","key":"10.1016\/j.compag.2022.107272_b50","doi-asserted-by":"crossref","first-page":"380","DOI":"10.1016\/j.compag.2009.07.009","article-title":"A complete farm management system based on animal identification using RFID technology","volume":"70","author":"Voulodimos","year":"2010","journal-title":"Comput. Electron. Agric."},{"issue":"4","key":"10.1016\/j.compag.2022.107272_b51","first-page":"1","article-title":"O-cnn: Octree-based convolutional neural networks for 3D shape analysis","volume":"36","author":"Wang","year":"2017","journal-title":"ACM Trans. Graph."},{"issue":"1","key":"10.1016\/j.compag.2022.107272_b52","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1186\/s40537-016-0043-6","article-title":"A survey of transfer learning","volume":"3","author":"Weiss","year":"2016","journal-title":"J. Big Data"},{"key":"10.1016\/j.compag.2022.107272_b53","unstructured":"Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J., 2015. 3d shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1912\u20131920."},{"issue":"9","key":"10.1016\/j.compag.2022.107272_b54","doi-asserted-by":"crossref","first-page":"2251","DOI":"10.1109\/TPAMI.2018.2857768","article-title":"Zero-shot learning\u2014a comprehensive evaluation of the good, the bad and the ugly","volume":"41","author":"Xian","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compag.2022.107272_b55","doi-asserted-by":"crossref","unstructured":"Yao, L., Hu, Z., Liu, C., Liu, H., Kuang, Y., Gao, Y., 2019. Cow face detection and recognition based on automatic feature extraction algorithm. In: Proceedings of the ACM Turing Celebration Conference-China. pp. 1\u20135.","DOI":"10.1145\/3321408.3322628"},{"issue":"11","key":"10.1016\/j.compag.2022.107272_b56","doi-asserted-by":"crossref","first-page":"10140","DOI":"10.3168\/jds.2018-16164","article-title":"Automatic monitoring system for individual dairy cows based on a deep learning framework that provides identification via body parts and estimation of body condition score","volume":"102","author":"Yukun","year":"2019","journal-title":"J. Dairy Sci."},{"year":"2005","series-title":"Semi-supervised learning literature survey","author":"Zhu","key":"10.1016\/j.compag.2022.107272_b57"}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169922005841?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169922005841?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,7,21]],"date-time":"2023-07-21T22:50:27Z","timestamp":1689979827000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169922005841"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10]]},"references-count":57,"alternative-id":["S0168169922005841"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2022.107272","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2022,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Using dorsal surface for individual identification of dairy calves through 3D deep learning algorithms","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2022.107272","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107272"}}