{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T06:48:02Z","timestamp":1726469282200},"reference-count":55,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2022,8]]},"DOI":"10.1016\/j.compag.2022.107189","type":"journal-article","created":{"date-parts":[[2022,7,7]],"date-time":"2022-07-07T09:12:50Z","timestamp":1657185170000},"page":"107189","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":15,"special_numbering":"C","title":["Assessment of nine gridded temperature data for modeling of wheat production systems"],"prefix":"10.1016","volume":"199","author":[{"given":"Alireza","family":"Araghi","sequence":"first","affiliation":[]},{"given":"Christopher J.","family":"Martinez","sequence":"additional","affiliation":[]},{"given":"J\u00f8rgen E.","family":"Olesen","sequence":"additional","affiliation":[]},{"given":"Gerrit","family":"Hoogenboom","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2022.107189_b0005","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.geoderma.2019.04.034","article-title":"Projections of future soil temperature in northeast Iran","volume":"349","author":"Araghi","year":"2019","journal-title":"Geoderma"},{"key":"10.1016\/j.compag.2022.107189_b0010","doi-asserted-by":"crossref","DOI":"10.1016\/j.agwat.2021.107222","article-title":"Investigation of satellite-related precipitation products for modeling of rainfed wheat production systems","volume":"258","author":"Araghi","year":"2021","journal-title":"Agric. Water Manag."},{"key":"10.1016\/j.compag.2022.107189_b0015","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1007\/s00484-021-02209-7","article-title":"Effect of wind speed variation on rainfed wheat production evaluated by the CERES-Wheat model","volume":"66","author":"Araghi","year":"2022","journal-title":"Int. J. Biometeorol."},{"key":"10.1016\/j.compag.2022.107189_b0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.agrformet.2019.107682","article-title":"Associations between large-scale climate oscillations and land surface phenology in Iran","volume":"278","author":"Araghi","year":"2019","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2022.107189_b0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.eja.2021.126419","article-title":"Evaluation of multiple gridded solar radiation data for crop modeling","volume":"133","author":"Araghi","year":"2022","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.compag.2022.107189_b0030","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/S1161-0301(01)00116-2","article-title":"Simulation of grain protein content with APSIM-Nwheat","volume":"16","author":"Asseng","year":"2002","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.compag.2022.107189_b0035","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/S0378-4290(03)00154-0","article-title":"Simulated wheat growth affected by rising temperature, increased water deficit and elevated atmospheric CO2","volume":"85","author":"Asseng","year":"2004","journal-title":"Field Crops Res."},{"key":"10.1016\/j.compag.2022.107189_b0040","doi-asserted-by":"crossref","first-page":"9","DOI":"10.2134\/agronj2009.0085","article-title":"Evaluation of NASA Satellite- and Model-Derived Weather Data for Simulation of Maize Yield Potential in China","volume":"102","author":"Bai","year":"2010","journal-title":"Agron. J."},{"key":"10.1016\/j.compag.2022.107189_b0045","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.agrformet.2016.11.008","article-title":"Impact of biases in gridded weather datasets on biomass estimates of short rotation woody cropping systems","volume":"233","author":"Bandaru","year":"2017","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2022.107189_b0050","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1007\/s00704-018-2383-y","article-title":"Assessment of different gridded weather data for soybean yield simulations in Brazil","volume":"135","author":"Battisti","year":"2019","journal-title":"Theor. Appl. Climatol."},{"key":"10.1016\/j.compag.2022.107189_b0055","doi-asserted-by":"crossref","first-page":"6204382","DOI":"10.1155\/2018\/6204382","article-title":"Solar Radiation Models and Gridded Databases to Fill Gaps in Weather Series and to Project Climate Change in Brazil","volume":"2018","author":"Bender","year":"2018","journal-title":"Adv. Meteorol."},{"key":"10.1016\/j.compag.2022.107189_b0060","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.eja.2019.03.002","article-title":"The impact of climate change on barley yield in the Mediterranean basin","volume":"106","author":"Cammarano","year":"2019","journal-title":"Eur. J. Agron."},{"year":"2011","series-title":"Crop Ecology","author":"Connor","key":"10.1016\/j.compag.2022.107189_b0065"},{"key":"10.1016\/j.compag.2022.107189_b0070","doi-asserted-by":"crossref","unstructured":"Deines, J.M., Patel, R., Liang, S.-Z., Dado, W., Lobell, D.B., 2020. A million kernels of truth: Insights into scalable satellite maize yield mapping and yield gap analysis from an extensive ground dataset in the US Corn Belt. Remote Sens Environ, 112174.","DOI":"10.1016\/j.rse.2020.112174"},{"key":"10.1016\/j.compag.2022.107189_b0075","doi-asserted-by":"crossref","first-page":"1881","DOI":"10.1007\/s00484-021-02145-6","article-title":"Assessing the performance of two gridded weather data for sugarcane crop simulations with a process-based model in Center-South Brazil","volume":"65","author":"Dias","year":"2021","journal-title":"Int. J. Biometeorol."},{"key":"10.1016\/j.compag.2022.107189_b0080","doi-asserted-by":"crossref","first-page":"1231","DOI":"10.1080\/03650340.2014.984696","article-title":"Applying the CSM-CERES-Wheat model for rainfed wheat with specified soil characteristic in undulating area in Iran","volume":"61","author":"Dokoohaki","year":"2015","journal-title":"Arch. Agron. Soil Sci."},{"key":"10.1016\/j.compag.2022.107189_b0085","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1007\/s00484-019-01810-1","article-title":"NASA\/POWER and DailyGridded weather datasets\u2014how good they are for estimating maize yields in Brazil?","volume":"64","author":"Duarte","year":"2020","journal-title":"Int. J. Biometeorol."},{"key":"10.1016\/j.compag.2022.107189_b0090","unstructured":"Fallah, M.H., 2019. Agroecological zoning and yield gap assessment of rainfed and irrigated wheat in Iran, Faculty of Agriculture. Ferdowsi University of Mashhad, p. 216."},{"year":"2015","series-title":"Agroecology, The Ecology of Sustainable Food Systems","author":"Gliessman","key":"10.1016\/j.compag.2022.107189_b0095"},{"key":"10.1016\/j.compag.2022.107189_b0100","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1175\/JAMC-D-15-0120.1","article-title":"Evaluating the Sensitivity of Agricultural Model Performance to Different Climate Inputs","volume":"55","author":"Glotter","year":"2016","journal-title":"J Appl Meteorol Climatol"},{"key":"10.1016\/j.compag.2022.107189_b0105","doi-asserted-by":"crossref","first-page":"623","DOI":"10.1002\/joc.3711","article-title":"Updated high-resolution grids of monthly climatic observations \u2013 the CRU TS3.10 Dataset","volume":"34","author":"Harris","year":"2014","journal-title":"Int. J. Climatol."},{"key":"10.1016\/j.compag.2022.107189_b0110","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.agsy.2016.07.006","article-title":"Modelling the sensitivity of agricultural systems to climate change and extreme climatic events","volume":"148","author":"Harrison","year":"2016","journal-title":"Agric. Syst."},{"key":"10.1016\/j.compag.2022.107189_b0115","doi-asserted-by":"crossref","first-page":"1999","DOI":"10.1002\/qj.3803","article-title":"The ERA5 global reanalysis","volume":"146","author":"Hersbach","year":"2020","journal-title":"Q J Roy Meteor Soc"},{"key":"10.1016\/j.compag.2022.107189_b0120","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/S0168-1923(00)00108-8","article-title":"Contribution of agrometeorology to the simulation of crop production and its applications","volume":"103","author":"Hoogenboom","year":"2000","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2022.107189_b0125","doi-asserted-by":"crossref","unstructured":"Hoogenboom, G., Porter, C.H., Boote, K.J., Shelia, V., Wilkens, P.W., Singh, U., White, J.W., Asseng, S., Lizaso, J.I., Moreno, L.P., Pavan, W., Ogoshi, R., Hunt, L.A., Tsuji, G.Y., Jones, J.W., 2019a. The DSSAT crop modeling ecosystem. In: p.173-216 [K.J. Boote, editor] Advances in Crop Modeling for a Sustainable Agriculture. Burleigh Dodds Science Publishing, Cambridge, United Kingdom.","DOI":"10.19103\/AS.2019.0061.10"},{"key":"10.1016\/j.compag.2022.107189_b0130","unstructured":"Hoogenboom, G., Porter, C.H., Shelia, V., Boote, K.J., Singh, U., White, J.W., Hunt, L.A., Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, S., Singels, A., Moreno, L.P., Jones, J.W., 2019b. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5 (https:\/\/DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA, 4.7.5 ed."},{"key":"10.1016\/j.compag.2022.107189_b0135","doi-asserted-by":"crossref","first-page":"7800","DOI":"10.1002\/2017JD026613","article-title":"Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes","volume":"122","author":"Iizumi","year":"2017","journal-title":"J. Geophys. Res. [Atmos.]"},{"key":"10.1016\/j.compag.2022.107189_b0140","unstructured":"Iranian Ministry of Agriculture, 2020. Statistics of agricultural products, http:\/\/www.maj.ir. Accessed: [1 Dec 2020]."},{"issue":"3\u20134","key":"10.1016\/j.compag.2022.107189_bib271","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1016\/S1161-0301(02)00107-7","article-title":"The DSSAT cropping system model","volume":"18","author":"Jones","year":"2003","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.compag.2022.107189_b0145","doi-asserted-by":"crossref","first-page":"1631","DOI":"10.1175\/BAMS-83-11-1631","article-title":"NCEP\u2013DOE AMIP-II Reanalysis (R-2)","volume":"83","author":"Kanamitsu","year":"2002","journal-title":"B Am Meteorol Soc"},{"key":"10.1016\/j.compag.2022.107189_b0150","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.eja.2016.08.012","article-title":"Performance of DSSAT-Nwheat across a wide range of current and future growing conditions","volume":"81","author":"Kassie","year":"2016","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.compag.2022.107189_b0155","unstructured":"Keating, B.A., Meinke, H., Probert, M.E., Huth, N.I., Hills, I.G., 2001. NWheat: Documentation and Performance of a Wheat Module for APSIM, CSIRO Australia, Tropical Agriculture Technical Memorandum 9."},{"key":"10.1016\/j.compag.2022.107189_b0160","doi-asserted-by":"crossref","first-page":"1571","DOI":"10.1002\/joc.5282","article-title":"Assessment of NASA\/POWER satellite-based weather system for Brazilian conditions and its impact on sugarcane yield simulation","volume":"38","author":"Monteiro","year":"2018","journal-title":"Int. J. Climatol."},{"key":"10.1016\/j.compag.2022.107189_b0165","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.eja.2016.10.013","article-title":"From grid to field: Assessing quality of gridded weather data for agricultural applications","volume":"82","author":"Mourtzinis","year":"2017","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.compag.2022.107189_b0170","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1016\/0022-1694(70)90255-6","article-title":"River flow forecasting through conceptual models part I \u2014 A discussion of principles","volume":"10","author":"Nash","year":"1970","journal-title":"J. Hydrol."},{"key":"10.1016\/j.compag.2022.107189_b0175","doi-asserted-by":"crossref","unstructured":"Niu, G.-Y., Yang, Z.-L., Mitchell, K.E., Chen, F., Ek, M.B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., Rosero, E., Tewari, M., Xia, Y., 2011. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. Atmos. 116.","DOI":"10.1029\/2010JD015139"},{"key":"10.1016\/j.compag.2022.107189_b0180","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/S1161-0301(02)00004-7","article-title":"Consequences of climate change for European agricultural productivity, land use and policy","volume":"16","author":"Olesen","year":"2002","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.compag.2022.107189_b0185","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1016\/j.isprsjprs.2018.02.015","article-title":"Evaluating accuracy of DSSAT model for soybean yield estimation using satellite weather data","volume":"138","author":"Ovando","year":"2018","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2022.107189_b0190","doi-asserted-by":"crossref","DOI":"10.1088\/1748-9326\/ab5ebb","article-title":"Weather dataset choice introduces uncertainty to estimates of crop yield responses to climate variability and change","volume":"14","author":"Parkes","year":"2019","journal-title":"Environ. Res. Lett."},{"key":"10.1016\/j.compag.2022.107189_b0195","series-title":"Understanding Options for Agricultural Production","first-page":"79","article-title":"Cereal growth, development, and yield","author":"Ritchie","year":"1998"},{"key":"10.1016\/j.compag.2022.107189_b0200","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1175\/BAMS-85-3-381","article-title":"The Global Land Data Assimilation System","volume":"85","author":"Rodell","year":"2004","journal-title":"B Am Meteorol Soc"},{"key":"10.1016\/j.compag.2022.107189_b0205","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.agrformet.2014.09.016","article-title":"Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation","volume":"200","author":"Ruane","year":"2015","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2022.107189_b0210","doi-asserted-by":"crossref","first-page":"3088","DOI":"10.1175\/JCLI3790.1","article-title":"Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling","volume":"19","author":"Sheffield","year":"2006","journal-title":"J. Clim."},{"key":"10.1016\/j.compag.2022.107189_b0215","doi-asserted-by":"crossref","first-page":"1185","DOI":"10.1029\/92WR02617","article-title":"Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model","volume":"29","author":"Sorooshian","year":"1993","journal-title":"Water Resour. Res."},{"key":"10.1016\/j.compag.2022.107189_b0220","doi-asserted-by":"crossref","first-page":"180","DOI":"10.3390\/atmos11020180","article-title":"The Implication of Different Sets of Climate Variables on Regional Maize Yield Simulations","volume":"11","author":"Srivastava","year":"2020","journal-title":"Atmosphere"},{"key":"10.1016\/j.compag.2022.107189_b0225","unstructured":"Stackhouse, P.W.J., Westberg, D., Hoell, J.M., Chandler, W.S., Zhang, T., 2015. Prediction of world-wide energy resource (POWER)\u2014Agroclimatology methodology\u2014(1.0\u00b0 latitude by 1.0\u00b0 longitude spatial resolution). Hampton, NASA Langely Research Center."},{"key":"10.1016\/j.compag.2022.107189_b0230","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.agsy.2018.07.001","article-title":"Using reanalysis in crop monitoring and forecasting systems","volume":"168","author":"Toreti","year":"2019","journal-title":"Agric. Syst."},{"key":"10.1016\/j.compag.2022.107189_b0235","doi-asserted-by":"crossref","unstructured":"Valeriano, T.T.B., de Souza Rolim, G., de Oliveira Aparecido, L.E., de Moraes, J.R.d.S.C., 2018. Estimation of Coffee Yield from Gridded Weather Data. Agron. J. 110, 2462-2477.","DOI":"10.2134\/agronj2017.11.0649"},{"key":"10.1016\/j.compag.2022.107189_b0240","doi-asserted-by":"crossref","first-page":"3822","DOI":"10.1111\/gcb.12302","article-title":"Impact of derived global weather data on simulated crop yields","volume":"19","author":"van Wart","year":"2013","journal-title":"Glob Chang Biol"},{"key":"10.1016\/j.compag.2022.107189_b0245","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.agrformet.2015.02.020","article-title":"Creating long-term weather data from thin air for crop simulation modeling","volume":"209\u2013210","author":"van Wart","year":"2015","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2022.107189_b0250","doi-asserted-by":"crossref","first-page":"1574","DOI":"10.1016\/j.agrformet.2008.05.017","article-title":"Evaluation of NASA satellite- and assimilation model-derived long-term daily temperature data over the continental US","volume":"148","author":"White","year":"2008","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.compag.2022.107189_b0255","doi-asserted-by":"crossref","first-page":"8995","DOI":"10.1029\/JC090iC05p08995","article-title":"Statistics for the evaluation and comparison of models","volume":"90","author":"Willmott","year":"1985","journal-title":"J. Geophys. Res. C: Oceans"},{"key":"10.1016\/j.compag.2022.107189_b0260","doi-asserted-by":"crossref","first-page":"2577","DOI":"10.1175\/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2","article-title":"Smart Interpolation of Annually Averaged Air Temperature in the United States","volume":"34","author":"Willmott","year":"1995","journal-title":"J Appl Meteorol Climatol"},{"key":"10.1016\/j.compag.2022.107189_b0265","unstructured":"Xie, P., Chen, M., Shi, W., 2010. CPC global unified gauge-based analysis of daily precipitation, 24th Conf. on Hydrology. Amer. Meteor. Soc, Atlanta, GA."},{"key":"10.1016\/j.compag.2022.107189_b0270","doi-asserted-by":"crossref","first-page":"1519","DOI":"10.1007\/s00484-020-01931-y","article-title":"Performance of predicted evapotranspiration and yield of rainfed wheat in the northeast Iran using gridded AgMERRA weather data","volume":"64","author":"Yaghoubi","year":"2020","journal-title":"Int. J. Biometeorol."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169922005063?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169922005063?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,19]],"date-time":"2024-01-19T02:13:12Z","timestamp":1705630392000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169922005063"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,8]]},"references-count":55,"alternative-id":["S0168169922005063"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2022.107189","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2022,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Assessment of nine gridded temperature data for modeling of wheat production systems","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2022.107189","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107189"}}