{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,6]],"date-time":"2024-07-06T20:25:02Z","timestamp":1720297502688},"reference-count":78,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1016\/j.compag.2022.107186","type":"journal-article","created":{"date-parts":[[2022,7,19]],"date-time":"2022-07-19T10:36:13Z","timestamp":1658226973000},"page":"107186","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["A novel underwater color correction method based on underwater imaging model and generative adversarial network"],"prefix":"10.1016","volume":"200","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4144-3898","authenticated-orcid":false,"given":"Kewei","family":"Cai","sequence":"first","affiliation":[]},{"given":"Zhipeng","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Hongshuai","family":"Pang","sequence":"additional","affiliation":[]},{"given":"Xinying","family":"Miao","sequence":"additional","affiliation":[]},{"given":"Jiaqi","family":"He","sequence":"additional","affiliation":[]},{"given":"Ying","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Tao","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2022.107186_b1","doi-asserted-by":"crossref","unstructured":"Akkaynak,\u00a0D., Treibitz,\u00a0T., 2019. Sea-Thru: A Method for Removing Water From Underwater Images. In: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 1682\u20131691.","DOI":"10.1109\/CVPR.2019.00178"},{"issue":"1","key":"10.1016\/j.compag.2022.107186_b2","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1109\/TIP.2017.2759252","article-title":"Color balance and fusion for underwater image enhancement","volume":"27","author":"Ancuti","year":"2018","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compag.2022.107186_b3","series-title":"2012 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"81","article-title":"Enhancing underwater images and videos by fusion","author":"Ancuti","year":"2012"},{"key":"10.1016\/j.compag.2022.107186_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.image.2020.115978","article-title":"Diving deeper into underwater image enhancement: A survey","volume":"89","author":"Anwar","year":"2020","journal-title":"Signal Process., Image Commun."},{"issue":"12","key":"10.1016\/j.compag.2022.107186_b5","doi-asserted-by":"crossref","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","article-title":"Segnet: A deep convolutional encoder-decoder architecture for image segmentation","volume":"39","author":"Badrinarayanan","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compag.2022.107186_b6","doi-asserted-by":"crossref","unstructured":"Berman,\u00a0D., Avidan,\u00a0S., et al., 2016. Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1674\u20131682.","DOI":"10.1109\/CVPR.2016.185"},{"key":"10.1016\/j.compag.2022.107186_b7","doi-asserted-by":"crossref","unstructured":"Cao,\u00a0K., Peng,\u00a0Y.-T., Cosman,\u00a0P.C., 2018. Underwater Image Restoration using Deep Networks to Estimate Background Light and Scene Depth. In: 2018 IEEE Southwest Symposium on Image Analysis and Interpretation. SSIAI, pp. 1\u20134.","DOI":"10.1109\/SSIAI.2018.8470347"},{"issue":"4","key":"10.1016\/j.compag.2022.107186_b8","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs","volume":"40","author":"Chen","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"4","key":"10.1016\/j.compag.2022.107186_b9","doi-asserted-by":"crossref","first-page":"1756","DOI":"10.1109\/TIP.2011.2179666","article-title":"Underwater image enhancement by wavelength compensation and dehazing","volume":"21","author":"Chiang","year":"2011","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compag.2022.107186_b10","series-title":"2016 IEEE Winter Conference on Applications of Computer Vision","first-page":"1","article-title":"Underwater 3D capture using a low-cost commercial depth camera","author":"Digumarti","year":"2016"},{"key":"10.1016\/j.compag.2022.107186_b11","doi-asserted-by":"crossref","unstructured":"Drews,\u00a0P., Nascimento,\u00a0E., Moraes,\u00a0F., Botelho,\u00a0S., Campos,\u00a0M., 2013. Transmission estimation in underwater single images. In: Proceedings of the IEEE International Conference on Computer Vision Workshops. pp. 825\u2013830.","DOI":"10.1109\/ICCVW.2013.113"},{"key":"10.1016\/j.compag.2022.107186_b12","series-title":"2018 IEEE International Conference on Robotics and Automation","first-page":"7159","article-title":"Enhancing underwater imagery using generative adversarial networks","author":"Fabbri","year":"2018"},{"key":"10.1016\/j.compag.2022.107186_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.image.2020.115892","article-title":"Underwater image enhancement with global\u2013local networks and compressed-histogram equalization","volume":"86","author":"Fu","year":"2020","journal-title":"Signal Process., Image Commun."},{"key":"10.1016\/j.compag.2022.107186_b14","series-title":"2014 IEEE International Conference on Image Processing","first-page":"4572","article-title":"A retinex-based enhancing approach for single underwater image","author":"Fu","year":"2014"},{"key":"10.1016\/j.compag.2022.107186_b15","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1016\/j.jvcir.2014.11.006","article-title":"Automatic red-channel underwater image restoration","volume":"26","author":"Galdran","year":"2015","journal-title":"J. Vis. Commun. Image Represent."},{"key":"10.1016\/j.compag.2022.107186_b16","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.asoc.2014.11.020","article-title":"Underwater image quality enhancement through integrated color model with Rayleigh distribution","volume":"27","author":"Ghani","year":"2015","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.compag.2022.107186_b17","doi-asserted-by":"crossref","unstructured":"Girshick,\u00a0R., Donahue,\u00a0J., Darrell,\u00a0T., Malik,\u00a0J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 580\u2013587.","DOI":"10.1109\/CVPR.2014.81"},{"key":"10.1016\/j.compag.2022.107186_b18","series-title":"Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2","first-page":"2672","article-title":"Generative adversarial nets","author":"Goodfellow","year":"2014"},{"key":"10.1016\/j.compag.2022.107186_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2020.105608","article-title":"Multi-scale enhancement fusion for underwater sea cucumber images based on human visual system modelling","volume":"175","author":"Guo","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2022.107186_b20","doi-asserted-by":"crossref","unstructured":"He,\u00a0K., Gkioxari,\u00a0G., Doll\u00e1r,\u00a0P., Girshick,\u00a0R., 2017. Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2961\u20132969.","DOI":"10.1109\/ICCV.2017.322"},{"issue":"12","key":"10.1016\/j.compag.2022.107186_b21","first-page":"2341","article-title":"Single image haze removal using dark channel prior","volume":"33","author":"He","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compag.2022.107186_b22","doi-asserted-by":"crossref","unstructured":"He,\u00a0K., Zhang,\u00a0X., Ren,\u00a0S., Sun,\u00a0J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.compag.2022.107186_b23","doi-asserted-by":"crossref","unstructured":"Huang,\u00a0G., Liu,\u00a0Z., Van Der\u00a0Maaten,\u00a0L., Weinberger,\u00a0K.Q., 2017. Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4700\u20134708.","DOI":"10.1109\/CVPR.2017.243"},{"key":"10.1016\/j.compag.2022.107186_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.image.2021.116174","article-title":"Color correction and restoration based on multi-scale recursive network for underwater optical image","volume":"93","author":"Huang","year":"2021","journal-title":"Signal Process., Image Commun."},{"key":"10.1016\/j.compag.2022.107186_b25","series-title":"Image enhancement by histogram transformation","author":"Hummel","year":"1975"},{"key":"10.1016\/j.compag.2022.107186_b26","series-title":"Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception","author":"Islam","year":"2020"},{"issue":"2","key":"10.1016\/j.compag.2022.107186_b27","doi-asserted-by":"crossref","first-page":"3227","DOI":"10.1109\/LRA.2020.2974710","article-title":"Fast underwater image enhancement for improved visual perception","volume":"5","author":"Islam","year":"2020","journal-title":"IEEE Robot. Autom. Lett."},{"key":"10.1016\/j.compag.2022.107186_b28","doi-asserted-by":"crossref","unstructured":"Isola,\u00a0P., Zhu,\u00a0J.-Y., Zhou,\u00a0T., Efros,\u00a0A.A., 2017. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1125\u20131134.","DOI":"10.1109\/CVPR.2017.632"},{"issue":"2","key":"10.1016\/j.compag.2022.107186_b29","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1109\/48.50695","article-title":"Computer modeling and the design of optimal underwater imaging systems","volume":"15","author":"Jaffe","year":"1990","journal-title":"IEEE J. Ocean. Eng."},{"issue":"3","key":"10.1016\/j.compag.2022.107186_b30","doi-asserted-by":"crossref","first-page":"683","DOI":"10.1109\/JOE.2014.2350751","article-title":"Underwater optical imaging: the past, the present, and the prospects","volume":"40","author":"Jaffe","year":"2014","journal-title":"IEEE J. Ocean. Eng."},{"key":"10.1016\/j.compag.2022.107186_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2019.107038","article-title":"Underwater scene prior inspired deep underwater image and video enhancement","volume":"98","author":"Li","year":"2020","journal-title":"Pattern Recognit."},{"issue":"12","key":"10.1016\/j.compag.2022.107186_b32","doi-asserted-by":"crossref","first-page":"5664","DOI":"10.1109\/TIP.2016.2612882","article-title":"Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior","volume":"25","author":"Li","year":"2016","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"10.1016\/j.compag.2022.107186_b33","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1109\/LSP.2018.2792050","article-title":"Emerging from water: Underwater image color correction based on weakly supervised color transfer","volume":"25","author":"Li","year":"2018","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.compag.2022.107186_b34","doi-asserted-by":"crossref","first-page":"24877","DOI":"10.1109\/ACCESS.2018.2818882","article-title":"A cascaded convolutional neural network for single image dehazing","volume":"6","author":"Li","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.compag.2022.107186_b35","doi-asserted-by":"crossref","first-page":"4376","DOI":"10.1109\/TIP.2019.2955241","article-title":"An underwater image enhancement benchmark dataset and beyond","volume":"29","author":"Li","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compag.2022.107186_b36","doi-asserted-by":"crossref","first-page":"26831","DOI":"10.1109\/ACCESS.2018.2833888","article-title":"Image dehazing using residual-based deep CNN","volume":"6","author":"Li","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.compag.2022.107186_b37","doi-asserted-by":"crossref","unstructured":"Li,\u00a0R., Pan,\u00a0J., Li,\u00a0Z., Tang,\u00a0J., 2018d. Single Image Dehazing via Conditional Generative Adversarial Network. In: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 8202\u20138211.","DOI":"10.1109\/CVPR.2018.00856"},{"key":"10.1016\/j.compag.2022.107186_b38","series-title":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing","first-page":"1731","article-title":"Single underwater image restoration by blue-green channels dehazing and red channel correction","author":"Li","year":"2016"},{"issue":"1","key":"10.1016\/j.compag.2022.107186_b39","first-page":"387","article-title":"WaterGAN: Unsupervised generative network to enable real-time color correction of monocular underwater images","volume":"3","author":"Li","year":"2017","journal-title":"IEEE Robot. Autom. Lett."},{"key":"10.1016\/j.compag.2022.107186_b40","doi-asserted-by":"crossref","DOI":"10.1016\/j.image.2021.116248","article-title":"DewaterNet: A fusion adversarial real underwater image enhancement network","volume":"95","author":"Li","year":"2021","journal-title":"Signal Process., Image Commun."},{"key":"10.1016\/j.compag.2022.107186_b41","series-title":"European Conference on Computer Vision","first-page":"21","article-title":"Ssd: Single shot multibox detector","author":"Liu","year":"2016"},{"issue":"12","key":"10.1016\/j.compag.2022.107186_b42","doi-asserted-by":"crossref","first-page":"4861","DOI":"10.1109\/TCSVT.2019.2963772","article-title":"Real-world underwater enhancement: Challenges, benchmarks, and solutions under natural light","volume":"30","author":"Liu","year":"2020","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"9","key":"10.1016\/j.compag.2022.107186_b43","doi-asserted-by":"crossref","first-page":"1488","DOI":"10.1109\/LGRS.2019.2950056","article-title":"MLFcGAN: Multilevel feature fusion-based conditional GAN for underwater image color correction","volume":"17","author":"Liu","year":"2020","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"issue":"10","key":"10.1016\/j.compag.2022.107186_b44","doi-asserted-by":"crossref","first-page":"2024","DOI":"10.1109\/TPAMI.2015.2505283","article-title":"Learning depth from single monocular images using deep convolutional neural fields","volume":"38","author":"Liu","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compag.2022.107186_b45","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.optlastec.2018.05.048","article-title":"Multi-scale adversarial network for underwater image restoration","volume":"110","author":"Lu","year":"2019","journal-title":"Opt. Laser Technol."},{"issue":"11","key":"10.1016\/j.compag.2022.107186_b46","doi-asserted-by":"crossref","first-page":"2545","DOI":"10.1109\/TMM.2017.2703089","article-title":"Learning efficient binary codes from high-level feature representations for multilabel image retrieval","volume":"19","author":"Ma","year":"2017","journal-title":"IEEE Trans. Multimed."},{"issue":"OCT.27","key":"10.1016\/j.compag.2022.107186_b47","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.neucom.2018.05.052","article-title":"Global and local semantics-preserving based deep hashing for cross-modal retrieval","volume":"312","author":"Ma","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compag.2022.107186_b48","article-title":"Discriminative deep metric learning for asymmetric discrete hashing","volume":"380","author":"Ma","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compag.2022.107186_b49","doi-asserted-by":"crossref","DOI":"10.1016\/j.neucom.2021.02.057","article-title":"Learning discrete class-specific prototypes for deep semantic hashing","author":"Ma","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compag.2022.107186_b50","doi-asserted-by":"crossref","first-page":"2129","DOI":"10.1109\/LSP.2020.3039755","article-title":"Correlation filtering-based hashing for fine-grained image retrieval","volume":"27","author":"Ma","year":"2020","journal-title":"IEEE Signal Process. Lett."},{"issue":"12","key":"10.1016\/j.compag.2022.107186_b51","doi-asserted-by":"crossref","first-page":"4695","DOI":"10.1109\/TIP.2012.2214050","article-title":"No-reference image quality assessment in the spatial domain","volume":"21","author":"Mittal","year":"2012","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"10.1016\/j.compag.2022.107186_b52","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1109\/LSP.2012.2227726","article-title":"Making a \u201ccompletely blind\u201d image quality analyzer","volume":"20","author":"Mittal","year":"2013","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.compag.2022.107186_b53","series-title":"Shallow-Uwnet: Compressed model for underwater image enhancement","author":"Naik","year":"2021"},{"issue":"3","key":"10.1016\/j.compag.2022.107186_b54","doi-asserted-by":"crossref","first-page":"541","DOI":"10.1109\/JOE.2015.2469915","article-title":"Human-visual-system-inspired underwater image quality measures","volume":"41","author":"Panetta","year":"2015","journal-title":"IEEE J. Ocean. Eng."},{"issue":"4","key":"10.1016\/j.compag.2022.107186_b55","doi-asserted-by":"crossref","first-page":"1579","DOI":"10.1109\/TIP.2017.2663846","article-title":"Underwater image restoration based on image blurriness and light absorption","volume":"26","author":"Peng","year":"2017","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compag.2022.107186_b56","doi-asserted-by":"crossref","unstructured":"Redmon,\u00a0J., Divvala,\u00a0S., Girshick,\u00a0R., Farhadi,\u00a0A., 2016. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 779\u2013788.","DOI":"10.1109\/CVPR.2016.91"},{"issue":"1","key":"10.1016\/j.compag.2022.107186_b57","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1023\/B:VLSI.0000028532.53893.82","article-title":"Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement","volume":"38","author":"Reza","year":"2004","journal-title":"J. VLSI Signal Process. Syst. Signal Image Video Technol."},{"key":"10.1016\/j.compag.2022.107186_b58","series-title":"2007 IEEE\/RSJ International Conference on Intelligent Robots and Systems","first-page":"3654","article-title":"Where is your dive buddy: tracking humans underwater using spatio-temporal features","author":"Sattar","year":"2007"},{"issue":"9","key":"10.1016\/j.compag.2022.107186_b59","doi-asserted-by":"crossref","first-page":"1655","DOI":"10.1109\/TPAMI.2007.1141","article-title":"Regularized image recovery in scattering media","volume":"29","author":"Schechner","year":"2007","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compag.2022.107186_b60","series-title":"OCEANS 2016 MTS\/IEEE Monterey","first-page":"1","article-title":"Estimation of ambient light and transmission map with common convolutional architecture","author":"Shin","year":"2016"},{"key":"10.1016\/j.compag.2022.107186_b61","doi-asserted-by":"crossref","unstructured":"Szegedy,\u00a0C., Liu,\u00a0W., Jia,\u00a0Y., Sermanet,\u00a0P., Reed,\u00a0S., Anguelov,\u00a0D., Erhan,\u00a0D., Vanhoucke,\u00a0V., Rabinovich,\u00a0A., 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1\u20139.","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"10.1016\/j.compag.2022.107186_b62","doi-asserted-by":"crossref","unstructured":"Venkatanath\u00a0N,\u00a0P.D., Maruthi Chandrasekhar\u00a0Bh,\u00a0S.S.C., Medasani,\u00a0S.S., 2015. Blind image quality evaluation using perception based features. In: 2015 Twenty First National Conference on Communications. NCC, pp. 1\u20136.","DOI":"10.1109\/NCC.2015.7084843"},{"issue":"4","key":"10.1016\/j.compag.2022.107186_b63","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image quality assessment: from error visibility to structural similarity","volume":"13","author":"Wang","year":"2004","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compag.2022.107186_b64","doi-asserted-by":"crossref","DOI":"10.1016\/j.image.2021.116250","article-title":"UIEC2\u0302-Net: CNN-based underwater image enhancement using two color space","volume":"96","author":"Wang","year":"2021","journal-title":"Signal Process., Image Commun."},{"key":"10.1016\/j.compag.2022.107186_b65","series-title":"2017 IEEE International Conference on Image Processing","first-page":"1382","article-title":"A deep CNN method for underwater image enhancement","author":"Wang","year":"2017"},{"key":"10.1016\/j.compag.2022.107186_b66","series-title":"UWGAN: underwater GAN for real-world underwater color restoration and dehazing","author":"Wang","year":"2019"},{"key":"10.1016\/j.compag.2022.107186_b67","series-title":"A Rapid Scene Depth Estimation Model Based on Underwater Light Attenuation Prior for Underwater Image Restoration","author":"Wei","year":"2018"},{"key":"10.1016\/j.compag.2022.107186_b68","doi-asserted-by":"crossref","DOI":"10.1016\/j.image.2019.115723","article-title":"Underwater image enhancement based on conditional generative adversarial network","volume":"81","author":"Yang","year":"2020","journal-title":"Signal Process., Image Commun."},{"key":"10.1016\/j.compag.2022.107186_b69","doi-asserted-by":"crossref","DOI":"10.1016\/j.image.2021.116225","article-title":"Underwater image enhancement with image colorfulness measure","volume":"95","author":"Yang","year":"2021","journal-title":"Signal Process., Image Commun."},{"issue":"12","key":"10.1016\/j.compag.2022.107186_b70","doi-asserted-by":"crossref","first-page":"6062","DOI":"10.1109\/TIP.2015.2491020","article-title":"An underwater color image quality evaluation metric","volume":"24","author":"Yang","year":"2015","journal-title":"IEEE Trans. Image Process."},{"issue":"11","key":"10.1016\/j.compag.2022.107186_b71","doi-asserted-by":"crossref","first-page":"3995","DOI":"10.1109\/TCSVT.2019.2958950","article-title":"Deep joint depth estimation and color correction from monocular underwater images based on unsupervised adaptation networks","volume":"30","author":"Ye","year":"2019","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.compag.2022.107186_b72","doi-asserted-by":"crossref","DOI":"10.1016\/j.image.2020.116030","article-title":"Enhancing underwater image via color correction and bi-interval contrast enhancement","volume":"90","author":"Zhang","year":"2021","journal-title":"Signal Process., Image Commun."},{"key":"10.1016\/j.compag.2022.107186_b73","doi-asserted-by":"crossref","DOI":"10.1016\/j.compeleceng.2021.106981","article-title":"Color correction and adaptive contrast enhancement for underwater image enhancement","volume":"91","author":"Zhang","year":"2021","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.compag.2022.107186_b74","doi-asserted-by":"crossref","unstructured":"Zhang,\u00a0H., Patel,\u00a0V.M., 2018. Densely connected pyramid dehazing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 3194\u20133203.","DOI":"10.1109\/CVPR.2018.00337"},{"key":"10.1016\/j.compag.2022.107186_b75","series-title":"2014 IEEE International Conference on Image Processing","first-page":"5422","article-title":"Underwater stereo image enhancement using a new physical model","author":"Zhang","year":"2014"},{"key":"10.1016\/j.compag.2022.107186_b76","series-title":"Loss functions for neural networks for image processing","author":"Zhao","year":"2015"},{"key":"10.1016\/j.compag.2022.107186_b77","doi-asserted-by":"crossref","unstructured":"Zhu,\u00a0J.-Y., Park,\u00a0T., Isola,\u00a0P., Efros,\u00a0A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2223\u20132232.","DOI":"10.1109\/ICCV.2017.244"},{"issue":"1","key":"10.1016\/j.compag.2022.107186_b78","article-title":"BayesIan retinex underwater image enhancement","volume":"101","author":"Zhuang","year":"2021","journal-title":"Eng. Appl. Artif. Intell."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169922005038?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169922005038?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,5,20]],"date-time":"2023-05-20T17:16:15Z","timestamp":1684602975000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169922005038"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":78,"alternative-id":["S0168169922005038"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2022.107186","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2022,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel underwater color correction method based on underwater imaging model and generative adversarial network","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2022.107186","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107186"}}