{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,6]],"date-time":"2024-07-06T20:24:00Z","timestamp":1720297440799},"reference-count":23,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,8,1]],"date-time":"2022-08-01T00:00:00Z","timestamp":1659312000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2022,8]]},"DOI":"10.1016\/j.compag.2022.107136","type":"journal-article","created":{"date-parts":[[2022,6,17]],"date-time":"2022-06-17T22:14:20Z","timestamp":1655504060000},"page":"107136","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["A deep learning model for mapping the perturbation in pressurised irrigation systems"],"prefix":"10.1016","volume":"199","author":[{"given":"Bilal","family":"Derardja","sequence":"first","affiliation":[]},{"given":"Umberto","family":"Fratino","sequence":"additional","affiliation":[]},{"given":"Nicola","family":"Lamaddalena","sequence":"additional","affiliation":[]},{"given":"R.","family":"Gonz\u00e1lez Perea","sequence":"additional","affiliation":[]},{"given":"J.A.","family":"Rodr\u00edguez D\u00edaz","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2022.107136_b0005","unstructured":"Abuiziah, I., Ahmed, O., Driss, O., 2013. Simulating Flow Transientsin Conveying Pipeline Systems by Rigid Column and Full Elastic Methods: Pump Combined with Air Chamber."},{"issue":"3","key":"10.1016\/j.compag.2022.107136_b0010","doi-asserted-by":"crossref","first-page":"373","DOI":"10.3826\/jhr.2008.2848","article-title":"Parameters affecting water-hammer wave attenuation, shape and timing\u2014Part 1: Mathematical tools","volume":"46","author":"Bergant","year":"2008","journal-title":"J. Hydraul. Res."},{"key":"10.1016\/j.compag.2022.107136_b0015","unstructured":"Brownlee, J., 2016. Deep learning with Python: develop deep learning models on Theano and TensorFlow using Keras. Machine Learning Mastery."},{"key":"10.1016\/j.compag.2022.107136_b0020","series-title":"Applied Hydraulic Transients","author":"Chaudhry","year":"1979"},{"key":"10.1016\/j.compag.2022.107136_b0025","doi-asserted-by":"crossref","unstructured":"Chaudhry, M.H., 2014. Transient-flow equations. In: Applied Hydraulic Transients. Springer, New York, NY, pp. 35\u201364.","DOI":"10.1007\/978-1-4614-8538-4_2"},{"key":"10.1016\/j.compag.2022.107136_b0030","doi-asserted-by":"crossref","unstructured":"Deisenroth, M.P., Faisal, A.A., Ong, C.S., 2020. Mathematics for Machine Learning. Cambridge University Press.","DOI":"10.1017\/9781108679930"},{"issue":"3","key":"10.1016\/j.compag.2022.107136_b0035","doi-asserted-by":"crossref","first-page":"558","DOI":"10.3390\/w11030558","article-title":"Perturbation indicators for on-demand pressurized irrigation systems","volume":"11","author":"Derardja","year":"2019","journal-title":"Water"},{"issue":"2","key":"10.1016\/j.compag.2022.107136_b0040","doi-asserted-by":"crossref","DOI":"10.4081\/jae.2021.1170","article-title":"Analysis of irrigation system performance based on an integrated approach with Sentinel-2 satellite images","volume":"52","author":"Er-Rami","year":"2021","journal-title":"J. Agric. Eng."},{"issue":"1","key":"10.1016\/j.compag.2022.107136_b0045","doi-asserted-by":"crossref","first-page":"204","DOI":"10.3390\/w12010204","article-title":"Generating hydrants\u2019 configurations for efficient analysis and management of Pressurized Irrigation distribution systems","volume":"12","author":"Fouial","year":"2020","journal-title":"Water"},{"key":"10.1016\/j.compag.2022.107136_b0050","unstructured":"G\u00e9ron, A., 2019. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media."},{"key":"10.1016\/j.compag.2022.107136_b0055","series-title":"Deep Learning","author":"Goodfellow","year":"2016"},{"issue":"1","key":"10.1016\/j.compag.2022.107136_b0060","first-page":"012003","article-title":"Research on machine learning and its algorithms and development","volume":"1544","author":"Jin","year":"2020","journal-title":"J. Phys.: Conf. Ser."},{"issue":"9","key":"10.1016\/j.compag.2022.107136_b0065","doi-asserted-by":"crossref","first-page":"3219","DOI":"10.1007\/s11269-018-1987-4","article-title":"A new indicator for unsteady flow analysis in pressurized irrigation systems","volume":"32","author":"Lamaddalena","year":"2018","journal-title":"Water Resour. Manage."},{"key":"10.1016\/j.compag.2022.107136_b0070","first-page":"159","article-title":"Participatory water management in Italy: case study of the Consortium \u201cBonifica della Capitanata\u201d","volume":"48","author":"Lamaddalena","year":"2004","journal-title":"Options M\u00e9diterran\u00e9ennes Series B"},{"key":"10.1016\/j.compag.2022.107136_b0075","series-title":"Hydraulics of Pipeline Systems","author":"Larock","year":"1999"},{"key":"10.1016\/j.compag.2022.107136_b0080","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.compag.2018.12.043","article-title":"Prediction of irrigation event occurrence at farm level using optimal decision trees","volume":"157","author":"Gonz\u00e1lez Perea","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2022.107136_b0090","unstructured":"Renault, D., Facon, T., Wahaj, R., 2007. Mapping system and services for canal operation techniques: the MASSCOTE approach (Doctoral dissertation, Colorado State University. Libraries)."},{"key":"10.1016\/j.compag.2022.107136_bib116","article-title":"Python Machine Learning: Machine Learning and Deep Learning with Python","author":"Raschka","year":"2017","journal-title":"Scikit-Learn, and TensorFlow"},{"issue":"3","key":"10.1016\/j.compag.2022.107136_b0095","doi-asserted-by":"crossref","first-page":"697","DOI":"10.3390\/w12030697","article-title":"Modelling and management of irrigation system","volume":"12","author":"Rodr\u00edguez D\u00edaz","year":"2020","journal-title":"Water"},{"issue":"12","key":"10.1016\/j.compag.2022.107136_b0100","first-page":"354","article-title":"Python\u2013the fastest growing programming language","volume":"4","author":"Srinath","year":"2017","journal-title":"Int. Res. J. Eng. Technol. (IRJET)"},{"issue":"1","key":"10.1016\/j.compag.2022.107136_b0105","doi-asserted-by":"crossref","first-page":"30","DOI":"10.2166\/aqua.2017.073","article-title":"Further investigation on water-hammer control inline strategy in water-supply systems","volume":"67","author":"Triki","year":"2018","journal-title":"J. Water Supply: Res. Technol.\u2014AQUA"},{"issue":"1","key":"10.1016\/j.compag.2022.107136_b0110","doi-asserted-by":"crossref","first-page":"108","DOI":"10.3390\/en12010108","article-title":"Investigation on water hammer control of centrifugal pumps in water supply pipeline systems","volume":"12","author":"Wan","year":"2019","journal-title":"Energies"},{"key":"10.1016\/j.compag.2022.107136_b0115","first-page":"464","volume":"Vol. 1","author":"Wylie","year":"1993","journal-title":"Fluid Transients in Systems"}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169922004537?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169922004537?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,5,22]],"date-time":"2023-05-22T11:16:07Z","timestamp":1684754167000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169922004537"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,8]]},"references-count":23,"alternative-id":["S0168169922004537"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2022.107136","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2022,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A deep learning model for mapping the perturbation in pressurised irrigation systems","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2022.107136","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"107136"}}