{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:19:57Z","timestamp":1726762797919},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100002661","name":"Fonds De La Recherche Scientifique - FNRS","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002661","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003130","name":"Fonds Wetenschappelijk Onderzoek","doi-asserted-by":"publisher","award":["G060516N","I013518N"],"id":[{"id":"10.13039\/501100003130","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004040","name":"KU Leuven","doi-asserted-by":"publisher","award":["C1\/16\/002"],"id":[{"id":"10.13039\/501100004040","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100012331","name":"Agentschap Innoveren en Ondernemen","doi-asserted-by":"publisher","award":["HBC.2016.0806"],"id":[{"id":"10.13039\/100012331","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1016\/j.compag.2022.106962","type":"journal-article","created":{"date-parts":[[2022,4,15]],"date-time":"2022-04-15T12:27:58Z","timestamp":1650025678000},"page":"106962","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":23,"special_numbering":"C","title":["Inline nondestructive internal disorder detection in pear fruit using explainable deep anomaly detection on X-ray images"],"prefix":"10.1016","volume":"197","author":[{"given":"Tim","family":"Van De Looverbosch","sequence":"first","affiliation":[]},{"given":"Jiaqi","family":"He","sequence":"additional","affiliation":[]},{"given":"Astrid","family":"Tempelaere","sequence":"additional","affiliation":[]},{"given":"Klaas","family":"Kelchtermans","sequence":"additional","affiliation":[]},{"given":"Pieter","family":"Verboven","sequence":"additional","affiliation":[]},{"given":"Tinne","family":"Tuytelaars","sequence":"additional","affiliation":[]},{"given":"Jan","family":"Sijbers","sequence":"additional","affiliation":[]},{"given":"Bart","family":"Nicolai","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2022.106962_b0005","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.jfoodeng.2017.08.009","article-title":"Non-destructive prediction of internal and external quality attributes of fruit with thick rind: A review","volume":"217","author":"Arendse","year":"2018","journal-title":"J. Food Eng."},{"key":"10.1016\/j.compag.2022.106962_b0010","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.inffus.2019.12.012","article-title":"Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI","volume":"58","author":"Barredo Arrieta","year":"2020","journal-title":"Inform. Fusion"},{"key":"10.1016\/j.compag.2022.106962_b0015","series-title":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"3319","article-title":"Network Dissection: Quantifying Interpretability of Deep Visual Representations","author":"Bau","year":"2017"},{"key":"10.1016\/j.compag.2022.106962_b0020","series-title":"Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications","first-page":"372","article-title":"Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders","author":"Bergmann","year":"2019"},{"issue":"2","key":"10.1016\/j.compag.2022.106962_b0025","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1006\/fstl.1997.0320","article-title":"Neural net classification of X-ray pistachio nut data","volume":"31","author":"Casasent","year":"1998","journal-title":"LWT - Food Sci. Technol."},{"issue":"3","key":"10.1016\/j.compag.2022.106962_b0030","doi-asserted-by":"crossref","DOI":"10.1145\/1541880.1541882","article-title":"Anomaly detection: A survey","volume":"41","author":"Chandola","year":"2009","journal-title":"ACM Comput. Surv."},{"key":"10.1016\/j.compag.2022.106962_b0035","doi-asserted-by":"crossref","unstructured":"Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V., 2019. AutoAugment: Learning Augmentation Strategies From Data. 113\u2013123. https:\/\/openaccess.thecvf.com\/content_CVPR_2019\/html\/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html.","DOI":"10.1109\/CVPR.2019.00020"},{"key":"10.1016\/j.compag.2022.106962_bib191","volume":"4","author":"Du","year":"2022","journal-title":"VOS: Learning What You Don\u2019t Know by Virtual Outlier Synthesis.\u201d ArXiv:2202.01197 [Cs]"},{"issue":"1","key":"10.1016\/j.compag.2022.106962_b0040","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.postharvbio.2006.08.008","article-title":"Browning disorders in pear fruit","volume":"43","author":"Franck","year":"2007","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2022.106962_b0045","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep Residual Learning for Image Recognition. http:\/\/arxiv.org\/abs\/1512.03385.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.compag.2022.106962_b0050","series-title":"Proceedings of the International Conference on Learning Representations","article-title":"Deep anomaly detection with outlier exposure","author":"Hendrycks","year":"2019"},{"key":"10.1016\/j.compag.2022.106962_b0055","unstructured":"imec-Vision Lab, CWI, 2019. ASTRA Toolbox (1.8)."},{"key":"10.1016\/j.compag.2022.106962_b0060","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.postharvbio.2015.12.015","article-title":"Consumers\u2019 visual attention to fruit defects and disorders: A case study with apple images","volume":"116","author":"Jaeger","year":"2016","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2022.106962_b0065","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/j.compag.2018.02.016","article-title":"Deep learning in agriculture: A survey","volume":"147","author":"Kamilaris","year":"2018","journal-title":"Comput. Electron. Agric."},{"issue":"6","key":"10.1016\/j.compag.2022.106962_b0070","doi-asserted-by":"crossref","first-page":"1695","DOI":"10.13031\/2013.3070","article-title":"Apple watercore sorting system using X-ray imagery: I. Algorithm development","volume":"43","author":"Kim","year":"2000","journal-title":"Trans. Am. Soc. Agric. Biol. Eng."},{"key":"10.1016\/j.compag.2022.106962_b0075","unstructured":"Kingma, D.P., Ba, J., 2014. Adam: A Method for Stochastic Optimization. https:\/\/arxiv.org\/abs\/1412.6980."},{"issue":"1","key":"10.1016\/j.compag.2022.106962_b0080","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s13197-011-0485-y","article-title":"X-ray imaging methods for internal quality evaluation of agricultural produce","volume":"51","author":"Kotwaliwale","year":"2014","journal-title":"J. Food Sci. Technol."},{"issue":"7553","key":"10.1016\/j.compag.2022.106962_b0085","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.compag.2022.106962_b0090","unstructured":"Liznerski, P., Ruff, L., Vandermeulen, R.A., Franks, B.J., Kloft, M., M\u00fcller, K.-R., 2021. Explainable Deep One-Class Classification. ArXiv:2007.01760 [Cs, Stat]. http:\/\/arxiv.org\/abs\/2007.01760."},{"issue":"4","key":"10.1016\/j.compag.2022.106962_b0095","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1145\/37402.37422","article-title":"Marching cubes: A high resolution 3D surface construction algorithm","volume":"21","author":"Lorensen","year":"1987","journal-title":"ACM SIGGRAPH Comput. Graph."},{"key":"10.1016\/j.compag.2022.106962_b0100","unstructured":"MATLAB, 2020. MATLAB 2020b. The MathWorks Inc."},{"issue":"4","key":"10.1016\/j.compag.2022.106962_b0105","doi-asserted-by":"crossref","first-page":"647","DOI":"10.1111\/1541-4337.12269","article-title":"Time-Temperature Management Along the Food Cold Chain: A Review of Recent Developments","volume":"16","author":"Mercier","year":"2017","journal-title":"Compr. Rev. Food Sci. Food Saf."},{"issue":"1","key":"10.1016\/j.compag.2022.106962_b0110","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1146\/annurev-food-030713-092410","article-title":"Nondestructive Measurement of Fruit and Vegetable Quality","volume":"5","author":"Nicola\u00ef","year":"2014","journal-title":"Ann. Rev. Food Sci. Technol."},{"issue":"1","key":"10.1016\/j.compag.2022.106962_b0115","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1109\/TSMC.1979.4310076","article-title":"A Threshold Selection Method from Gray-Level Histograms","volume":"9","author":"Otsu","year":"1979","journal-title":"IEEE Trans. Syst. Man Cybernet."},{"issue":"11","key":"10.1016\/j.compag.2022.106962_b0120","doi-asserted-by":"crossref","first-page":"1171","DOI":"10.1016\/j.tplants.2021.07.010","article-title":"X-ray computed tomography for 3D plant imaging","volume":"26","author":"Piovesan","year":"2021","journal-title":"Trends Plant Sci."},{"issue":"5","key":"10.1016\/j.compag.2022.106962_b0125","doi-asserted-by":"crossref","first-page":"756","DOI":"10.1109\/JPROC.2021.3052449","article-title":"A Unifying Review of Deep and Shallow Anomaly Detection","volume":"109","author":"Ruff","year":"2021","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.compag.2022.106962_b0130","series-title":"ICML 2021 Workshop on Uncertainty & Robustness in Deep Learning","article-title":"Rethinking assumptions in deep anomaly detection","author":"Ruff","year":"2021"},{"key":"10.1016\/j.compag.2022.106962_b0135","series-title":"International Conference on Learning Representations","article-title":"Deep semi-supervised anomaly detection","author":"Ruff","year":"2020"},{"key":"10.1016\/j.compag.2022.106962_b0140","series-title":"2017 IEEE International Conference on Computer Vision (ICCV)","first-page":"618","article-title":"Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization","author":"Selvaraju","year":"2017"},{"issue":"3","key":"10.1016\/j.compag.2022.106962_b0145","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1006\/jaer.2001.0705","article-title":"Artificial intelligence classifiers for sorting apples based on watercore","volume":"79","author":"Shahin","year":"2001","journal-title":"J. Agric. Eng. Res."},{"issue":"2","key":"10.1016\/j.compag.2022.106962_b0150","article-title":"A classification framework for anomaly detection","volume":"6","author":"Steinwart","year":"2005","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.compag.2022.106962_b0155","doi-asserted-by":"crossref","DOI":"10.1016\/j.postharvbio.2015.09.020","article-title":"A segmentation and classification algorithm for online detection of internal disorders in citrus using X-ray radiographs","author":"van Dael","year":"2016","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2022.106962_b0160","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.postharvbio.2017.02.002","article-title":"Multisensor X-ray inspection of internal defects in horticultural products","volume":"128","author":"van Dael","year":"2017","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2022.106962_b0165","doi-asserted-by":"crossref","unstructured":"van Dael, Verboven, P., Zanella, A., Sijbers, J., Nicolai, B., 2019. Combination of shape and X-ray inspection for apple internal quality control: In silico analysis of the methodology based on X-ray computed tomography. Postharvest Biol. Technol. May, 0\u20131. 10.1016\/j.postharvbio.2018.05.020.","DOI":"10.1016\/j.postharvbio.2018.05.020"},{"key":"10.1016\/j.compag.2022.106962_b0170","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2021.114925","article-title":"Non-destructive internal disorder detection of Conference pears by semantic segmentation of X-ray CT scans using deep learning","volume":"176","author":"Van De Looverbosch","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compag.2022.106962_b0175","doi-asserted-by":"crossref","DOI":"10.1016\/j.postharvbio.2020.111246","article-title":"Visible-NIR \u2018point\u2019 spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use","volume":"168","author":"Walsh","year":"2020","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2022.106962_b0180","doi-asserted-by":"crossref","DOI":"10.1016\/j.postharvbio.2020.111139","article-title":"The uses of near infra-red spectroscopy in postharvest decision support: A review","volume":"163","author":"Walsh","year":"2020","journal-title":"Postharvest Biol. Technol."},{"key":"10.1016\/j.compag.2022.106962_b0185","doi-asserted-by":"crossref","unstructured":"Youden, W.J., 1950. Index for rating diagnostic tests. Cancer, 3(1), 32\u201335. 10.1002\/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3.","DOI":"10.1002\/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3"},{"issue":"6","key":"10.1016\/j.compag.2022.106962_b0190","doi-asserted-by":"crossref","first-page":"1793","DOI":"10.1111\/1541-4337.12492","article-title":"Application of Deep Learning in Food: A Review","volume":"18","author":"Zhou","year":"2019","journal-title":"Compr. Rev. Food Sci. Food Saf."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169922002794?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169922002794?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,10]],"date-time":"2023-01-10T07:12:49Z","timestamp":1673334769000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169922002794"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":39,"alternative-id":["S0168169922002794"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2022.106962","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2022,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Inline nondestructive internal disorder detection in pear fruit using explainable deep anomaly detection on X-ray images","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2022.106962","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106962"}}