{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T20:34:19Z","timestamp":1727123659973},"reference-count":60,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,20]],"date-time":"2023-01-20T00:00:00Z","timestamp":1674172800000},"content-version":"am","delay-in-days":353,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T00:00:00Z","timestamp":1643673600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100006928","name":"The Ohio State University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100006928","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100013437","name":"Ohio Soybean Council","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100013437","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100015708","name":"Center for Applied Plant Sciences, Ohio State University","doi-asserted-by":"publisher","award":["013330"],"id":[{"id":"10.13039\/100015708","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001711","name":"Swiss National Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001711","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["1350941","1749501"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2022,2]]},"DOI":"10.1016\/j.compag.2021.106682","type":"journal-article","created":{"date-parts":[[2022,1,20]],"date-time":"2022-01-20T04:39:40Z","timestamp":1642653580000},"page":"106682","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":22,"special_numbering":"C","title":["Assessing the efficacy of machine learning techniques to characterize soybean defoliation from unmanned aerial vehicles"],"prefix":"10.1016","volume":"193","author":[{"given":"Zichen","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Sami","family":"Khanal","sequence":"additional","affiliation":[]},{"given":"Amy","family":"Raudenbush","sequence":"additional","affiliation":[]},{"given":"Kelley","family":"Tilmon","sequence":"additional","affiliation":[]},{"given":"Christopher","family":"Stewart","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2021.106682_b0005","series-title":"2014 IEEE\/RSJ International Conference on Intelligent Robots and Systems","first-page":"4805","article-title":"On crop height estimation with uavs","author":"Anthony","year":"2014"},{"key":"10.1016\/j.compag.2021.106682_b0010","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.compag.2018.08.013","article-title":"Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification","volume":"153","author":"Barbedo","year":"2018","journal-title":"Comput. Electron. Agric."},{"issue":"11","key":"10.1016\/j.compag.2021.106682_b0015","doi-asserted-by":"crossref","first-page":"10395","DOI":"10.3390\/rs61110395","article-title":"Estimating biomass of barley using crop surface models (csms) derived from uav-based rgb imaging","volume":"6","author":"Bendig","year":"2014","journal-title":"Remote Sens."},{"issue":"8","key":"10.1016\/j.compag.2021.106682_b0020","first-page":"117","article-title":"Applying naive bayes data mining technique for classification of agricultural land soils","volume":"9","author":"Bhargavi","year":"2009","journal-title":"Int. J. Comput. Sci. Network Sec."},{"key":"10.1016\/j.compag.2021.106682_b0025","doi-asserted-by":"crossref","unstructured":"Boubin, J., Chumley, J., Stewart, C., Khanal, S., 2019. Autonomic computing challenges in fully autonomous precision agriculture. In: 2019 IEEE International Conference on Autonomic Computing (ICAC). IEEE, pp. 11\u201317.","DOI":"10.1109\/ICAC.2019.00012"},{"key":"10.1016\/j.compag.2021.106682_b0030","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1109\/TPAMI.1986.4767851","article-title":"A computational approach to edge detection","volume":"6","author":"Canny","year":"1986","journal-title":"IEEE Trans. Pattern Anal. Machine Intell."},{"key":"10.1016\/j.compag.2021.106682_b0035","doi-asserted-by":"crossref","first-page":"360","DOI":"10.1016\/j.compag.2018.11.040","article-title":"Estimating soybean leaf defoliation using convolutional neural networks and synthetic images","volume":"156","author":"da Silva","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2021.106682_b0040","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1016\/j.compag.2018.01.009","article-title":"Deep learning models for plant disease detection and diagnosis","volume":"145","author":"Ferentinos","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2021.106682_b0045","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/j.compag.2016.09.004","article-title":"Random forest and leaf multispectral reflectance data to differentiate three soybean varieties from two pigweeds","volume":"128","author":"Fletcher","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2021.106682_b0050","doi-asserted-by":"crossref","first-page":"1162","DOI":"10.3389\/fpls.2018.01162","article-title":"High-performance deep neural network-based tomato plant diseases and pests diagnosis system with refinement filter bank","volume":"9","author":"Fuentes","year":"2018","journal-title":"Front. Plant Sci."},{"key":"10.1016\/j.compag.2021.106682_b0055","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"1440","article-title":"Fast r-cnn","author":"Girshick","year":"2015"},{"key":"10.1016\/j.compag.2021.106682_b0060","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, p. 580\u2013587.","DOI":"10.1109\/CVPR.2014.81"},{"issue":"18","key":"10.1016\/j.compag.2021.106682_b0065","doi-asserted-by":"crossref","first-page":"7407","DOI":"10.1016\/j.eswa.2013.06.077","article-title":"Stream water temperature prediction based on gaussian process regression","volume":"40","author":"Grbi\u0107","year":"2013","journal-title":"Expert Syst. Appl."},{"issue":"1\u20132","key":"10.1016\/j.compag.2021.106682_b0070","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.geoderma.2008.05.008","article-title":"Soil organic carbon concentrations and stocks on barro colorado islanddigital soil mapping using random forests analysis","volume":"146","author":"Grimm","year":"2008","journal-title":"Geoderma"},{"key":"10.1016\/j.compag.2021.106682_b0075","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1016\/j.compag.2016.07.003","article-title":"Deep learning for plant identification using vein morphological patterns","volume":"127","author":"Grinblat","year":"2016","journal-title":"Comput. Electron. Agric."},{"issue":"3","key":"10.1016\/j.compag.2021.106682_b0080","doi-asserted-by":"crossref","first-page":"353","DOI":"10.2134\/agronj1998.00021962009000030007x","article-title":"Soybean leaf morphology and defoliation tolerance","volume":"90","author":"Haile","year":"1998","journal-title":"Agron. J."},{"key":"10.1016\/j.compag.2021.106682_b0085","doi-asserted-by":"crossref","unstructured":"Hara, K., Adams, A., Milland, K., Savage, S., Hanrahan, B.V., Bigham, J.P., Callison-Burch, C., 2019. Worker demographics and earnings on amazon mechanical turk: An exploratory analysis. In: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1\u20136.","DOI":"10.1145\/3290607.3312970"},{"issue":"9","key":"10.1016\/j.compag.2021.106682_b0090","doi-asserted-by":"crossref","first-page":"1904","DOI":"10.1109\/TPAMI.2015.2389824","article-title":"Spatial pyramid pooling in deep convolutional networks for visual recognition","volume":"37","author":"He","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Machine Intell."},{"key":"10.1016\/j.compag.2021.106682_b0095","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.compag.2021.106682_b0100","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R., 2017. Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961\u20132969.","DOI":"10.1109\/ICCV.2017.322"},{"key":"10.1016\/j.compag.2021.106682_b0105","series-title":"Pest Management in Soybean","first-page":"56","article-title":"New understandings of soybean defoliation and their implication for pest management","author":"Higley","year":"1992"},{"key":"10.1016\/j.compag.2021.106682_b0110","first-page":"181","article-title":"Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index","volume":"28","author":"Holzman","year":"2014","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.compag.2021.106682_b0115","doi-asserted-by":"crossref","unstructured":"Hossain, E., Hossain, M.F., Rahaman. M.A., 2019. A color and texture based approach for the detection and classification of plant leaf disease using knn classifier. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE). IEEE, pp. 1\u20136.","DOI":"10.1109\/ECACE.2019.8679247"},{"key":"10.1016\/j.compag.2021.106682_b0120","unstructured":"Hunt, T., 2007. Evaluating soybean defoliation and treatment need."},{"key":"10.1016\/j.compag.2021.106682_b0125","unstructured":"Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning. PMLR, pp. 448\u2013456."},{"key":"10.1016\/j.compag.2021.106682_b0130","doi-asserted-by":"crossref","unstructured":"Ipeirotis, P.G., Provost, F., Wang, J., 2010. Quality management on amazon mechanical turk. In: Proceedings of the ACM SIGKDD Workshop on Human Computation, pp. 64\u201367.","DOI":"10.1145\/1837885.1837906"},{"issue":"4","key":"10.1016\/j.compag.2021.106682_b0135","doi-asserted-by":"crossref","first-page":"1588","DOI":"10.3390\/rs5041588","article-title":"Estimating crop coefficients using remote sensing-based vegetation index","volume":"5","author":"Kamble","year":"2013","journal-title":"Remote Sen."},{"key":"10.1016\/j.compag.2021.106682_b0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2018.03.008","article-title":"Integrating aerial images for in-season nitrogen management in a corn field","volume":"148","author":"Khanal","year":"2018","journal-title":"Comput. Electron. Agric."},{"issue":"6","key":"10.1016\/j.compag.2021.106682_b0145","first-page":"513","article-title":"Use of site-specific management zones to improve nitrogen management for precision agriculture","volume":"57","author":"Khosla","year":"2002","journal-title":"J. Soil Water Conserv."},{"issue":"11","key":"10.1016\/j.compag.2021.106682_b0150","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/0273-1177(95)00079-T","article-title":"Application of vegetation index and brightness temperature for drought detection","volume":"15","author":"Kogan","year":"1995","journal-title":"Adv. Space Res."},{"key":"10.1016\/j.compag.2021.106682_b0155","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","volume":"25","author":"Krizhevsky","year":"2012","journal-title":"Adv. Neural Informat. Process. Syst."},{"issue":"1","key":"10.1016\/j.compag.2021.106682_b0160","doi-asserted-by":"crossref","first-page":"6","DOI":"10.3390\/drones3010006","article-title":"Greenness indices from a low-cost uav imagery as tools for monitoring post-fire forest recovery","volume":"3","author":"Larrinaga","year":"2019","journal-title":"Drones"},{"issue":"3","key":"10.1016\/j.compag.2021.106682_b0165","doi-asserted-by":"crossref","first-page":"259","DOI":"10.3390\/rs9030259","article-title":"A combined random forest and obia classification scheme for mapping smallholder agriculture at different nomenclature levels using multisource data (simulated sentinel-2 time series, vhrs and dem)","volume":"9","author":"Lebourgeois","year":"2017","journal-title":"Remote Sens."},{"issue":"4","key":"10.1016\/j.compag.2021.106682_b0170","doi-asserted-by":"crossref","first-page":"541","DOI":"10.1162\/neco.1989.1.4.541","article-title":"Backpropagation applied to handwritten zip code recognition","volume":"1","author":"LeCun","year":"1989","journal-title":"Neural Comput."},{"key":"10.1016\/j.compag.2021.106682_b0175","doi-asserted-by":"crossref","unstructured":"Lee, S.H., Chan, C.S., Wilkin, P., Remagnino, P., 2015. Deep-plant: Plant identification with convolutional neural networks. In: 2015 IEEE International Conference on Image Processing (ICIP). IEEE, pp. 452\u2013456.","DOI":"10.1109\/ICIP.2015.7350839"},{"key":"10.1016\/j.compag.2021.106682_b0180","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.compag.2018.03.021","article-title":"Estimation of soybean leaf area, edge, and defoliation using color image analysis","volume":"150","author":"Liang","year":"2018","journal-title":"Comput. Electron. Agric."},{"issue":"8","key":"10.1016\/j.compag.2021.106682_b0185","doi-asserted-by":"crossref","first-page":"1499","DOI":"10.1080\/01904160600837642","article-title":"Salinity and defoliation effects on soybean growth","volume":"29","author":"Li","year":"2006","journal-title":"J. Plant Nutrit."},{"key":"10.1016\/j.compag.2021.106682_b0190","unstructured":"Litchi for dji. https:\/\/flylitchi.com\/, 2021."},{"key":"10.1016\/j.compag.2021.106682_b0195","doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431\u20133440.","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"10.1016\/j.compag.2021.106682_b0200","doi-asserted-by":"crossref","unstructured":"Lu, S., Cai, Z.-J., Zhang, X.-B., 2009. Forecasting agriculture water consumption based on pso and svm. In: 2009 2nd IEEE International Conference on Computer Science and Information Technology. IEEE, pp. 147\u2013150.","DOI":"10.1109\/ICCSIT.2009.5234448"},{"key":"10.1016\/j.compag.2021.106682_b0205","first-page":"1","article-title":"Techno-economic impacts of using a laser-guided variable-rate spraying system to retrofit conventional constant-rate sprayers","author":"Manandhar","year":"2020","journal-title":"Precision Agric."},{"key":"10.1016\/j.compag.2021.106682_b0210","unstructured":"Miriti, E., 2016. Classification of selected apple fruit varieties using Naive Bayes. PhD thesis, University of Nairobi."},{"key":"10.1016\/j.compag.2021.106682_b0215","doi-asserted-by":"crossref","unstructured":"Morris, N., Stewart, C., Chen, L., Birke, R., et al., 2018. Model-driven computational sprinting. In: ACM Eurosys.","DOI":"10.1145\/3190508.3190543"},{"issue":"6","key":"10.1016\/j.compag.2021.106682_b0220","first-page":"462","article-title":"Erosion probability maps: Calibrating precision agriculture data with soil surveys using logistic regression","volume":"60","author":"Mueller","year":"2005","journal-title":"J. Soil Water Conservat."},{"issue":"6","key":"10.1016\/j.compag.2021.106682_b0225","doi-asserted-by":"crossref","first-page":"1190","DOI":"10.1603\/0022-0493-95.6.1190","article-title":"An inexpensive, accurate method for measuring leaf area and defoliation through digital image analysis","volume":"95","author":"ONeal","year":"2002","journal-title":"J. Econ. Entomol."},{"key":"10.1016\/j.compag.2021.106682_b0230","first-page":"2825","article-title":"Scikit-learn: Machine learning in python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J. Machine Learn. Res."},{"key":"10.1016\/j.compag.2021.106682_b0235","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/j.compag.2014.11.021","article-title":"An optimum method for real-time in-field detection of huanglongbing disease using a vision sensor","volume":"110","author":"Pourreza","year":"2015","journal-title":"Comput. Electron. Agric."},{"issue":"7","key":"10.1016\/j.compag.2021.106682_b0240","doi-asserted-by":"crossref","first-page":"6","DOI":"10.9781\/ijimai.2016.371","article-title":"Svm and ann based classification of plant diseases using feature reduction technique","volume":"3","author":"Pujari","year":"2016","journal-title":"IJIMAI"},{"key":"10.1016\/j.compag.2021.106682_b0245","unstructured":"Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497."},{"key":"10.1016\/j.compag.2021.106682_b0250","unstructured":"Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556."},{"issue":"1","key":"10.1016\/j.compag.2021.106682_b0255","first-page":"1929","article-title":"Dropout: a simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava","year":"2014","journal-title":"J. Machine Learn. Res."},{"key":"10.1016\/j.compag.2021.106682_b0260","doi-asserted-by":"crossref","unstructured":"Suresha, M., Shreekanth, K., Thirumalesh, B., 2017. Recognition of diseases in paddy leaves using knn classifier. In: 2017 2nd International Conference for Convergence in Technology (I2CT). IEEE, pp. 663\u2013666.","DOI":"10.1109\/I2CT.2017.8226213"},{"key":"10.1016\/j.compag.2021.106682_b0265","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/j.compag.2015.05.001","article-title":"Crop classification of upland fields using random forest of time-series landsat 7 etm+ data","volume":"115","author":"Tatsumi","year":"2015","journal-title":"Comput. Electron. Agric."},{"issue":"5","key":"10.1016\/j.compag.2021.106682_b0270","doi-asserted-by":"crossref","first-page":"683","DOI":"10.1093\/jee\/67.5.683","article-title":"Influence of defoliation and depodding on yield of soybeans","volume":"67","author":"Thomas","year":"1974","journal-title":"J. Econ. Entomol."},{"key":"10.1016\/j.compag.2021.106682_b0275","unstructured":"USDA, 2019. United states department of agriculture national agricultural statistic service. 2019. crop production 2018 summary, usda-naas issn 1057\u20137823."},{"key":"10.1016\/j.compag.2021.106682_b0280","unstructured":"Venkatesh, S., Stewart, Z.Z.C., Khanal, S., 2019. Corn counting using unmanned aircraft systems and convolutional neural networks. Poster in Department of Food, Agricultural and Biological Engineering."},{"key":"10.1016\/j.compag.2021.106682_b0285","doi-asserted-by":"crossref","first-page":"105817","DOI":"10.1016\/j.compag.2020.105817","article-title":"Adaptive autonomous uav scouting for rice lodging assessment using edge computing with deep learning edanet","volume":"179","author":"Yang","year":"2020","journal-title":"Comput. Electron. Agric."},{"issue":"13","key":"10.1016\/j.compag.2021.106682_b0290","doi-asserted-by":"crossref","first-page":"1548","DOI":"10.3390\/rs11131548","article-title":"Comparison of vegetation indices derived from uav data for differentiation of tillage effects in agriculture","volume":"11","author":"Yeom","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2021.106682_b0295","doi-asserted-by":"crossref","unstructured":"You, J., Li, X., Low, M., Lobell, D., Ermon, S., 2017. Deep gaussian process for crop yield prediction based on remote sensing data. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31.","DOI":"10.1609\/aaai.v31i1.11172"},{"issue":"22","key":"10.1016\/j.compag.2021.106682_b0300","doi-asserted-by":"crossref","first-page":"6585","DOI":"10.3390\/s20226585","article-title":"Whole-field reinforcement learning: A fully autonomous aerial scouting method for precision agriculture","volume":"20","author":"Zhang","year":"2020","journal-title":"Sensors"}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169921006992?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169921006992?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T16:59:33Z","timestamp":1726505973000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169921006992"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,2]]},"references-count":60,"alternative-id":["S0168169921006992"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2021.106682","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2022,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Assessing the efficacy of machine learning techniques to characterize soybean defoliation from unmanned aerial vehicles","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2021.106682","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106682"}}