{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,22]],"date-time":"2025-04-22T02:45:22Z","timestamp":1745289922628,"version":"3.37.3"},"reference-count":28,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100014103","name":"Key Technology Research and Development Program of Shandong","doi-asserted-by":"publisher","award":["2019JZZY010713"],"id":[{"id":"10.13039\/100014103","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2018YFE0107000"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1016\/j.compag.2021.106421","type":"journal-article","created":{"date-parts":[[2021,8,31]],"date-time":"2021-08-31T09:07:44Z","timestamp":1630400864000},"page":"106421","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":81,"special_numbering":"C","title":["Estimation of nitrogen nutrition index in rice from UAV RGB images coupled with machine learning algorithms"],"prefix":"10.1016","volume":"189","author":[{"given":"Zhengchao","family":"Qiu","sequence":"first","affiliation":[]},{"given":"Fei","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Zhenwang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Xuebin","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Haixiao","family":"Ge","sequence":"additional","affiliation":[]},{"given":"Changwen","family":"Du","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2021.106421_b0005","first-page":"79","article-title":"Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley","volume":"39","author":"Bendig","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.compag.2021.106421_b0010","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1186\/s13007-019-0418-8","article-title":"Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras","volume":"15","author":"Cen","year":"2019","journal-title":"Plant Methods"},{"key":"10.1016\/j.compag.2021.106421_b0015","doi-asserted-by":"crossref","first-page":"107588","DOI":"10.1016\/j.fcr.2019.107588","article-title":"Combining breeding traits and agronomic indicators to characterize the impact of cultivar on the nitrogen use efficiency of bread wheat","volume":"242","author":"Cohan","year":"2019","journal-title":"Field Crops Res."},{"key":"10.1016\/j.compag.2021.106421_b0020","doi-asserted-by":"crossref","first-page":"126148","DOI":"10.1016\/j.eja.2020.126148","article-title":"Integrating satellite data with a nitrogen nutrition curve for precision top-dress fertilization of durum wheat","volume":"120","author":"Fabbri","year":"2020","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.compag.2021.106421_b0025","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1186\/s13007-019-0394-z","article-title":"Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data","volume":"15","author":"Han","year":"2019","journal-title":"Plant Methods"},{"key":"10.1016\/j.compag.2021.106421_b0030","doi-asserted-by":"crossref","first-page":"105446","DOI":"10.1016\/j.compag.2020.105446","article-title":"Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach","volume":"174","author":"Kerkech","year":"2020","journal-title":"Comput. Electron. Agric."},{"issue":"8","key":"10.1016\/j.compag.2021.106421_b0035","doi-asserted-by":"crossref","first-page":"1405","DOI":"10.1080\/01431169008955102","article-title":"Remote sensing of weather impacts on vegetation in non-homogeneous areas","volume":"11","author":"Kogan","year":"1990","journal-title":"Int. J. Remote Sens."},{"issue":"9","key":"10.1016\/j.compag.2021.106421_b0040","doi-asserted-by":"crossref","first-page":"4489","DOI":"10.1109\/JSTARS.2015.2496358","article-title":"Combined use of airborne lidar and satellite GF-1 data to estimate leaf area index, height, and aboveground biomass of maize during peak growing season","volume":"8","author":"Li","year":"2015","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"issue":"1","key":"10.1016\/j.compag.2021.106421_b0045","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1080\/10106040108542184","article-title":"Spatially located platform and aerial photography for documentation of grazing impacts on wheat","volume":"16","author":"Louhaichi","year":"2008","journal-title":"Geocarto Int."},{"key":"10.1016\/j.compag.2021.106421_b0050","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1186\/s13007-019-0402-3","article-title":"Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system","volume":"15","author":"Lu","year":"2019","journal-title":"Plant Methods"},{"issue":"3","key":"10.1016\/j.compag.2021.106421_b0055","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1007\/s10705-017-9848-8","article-title":"Nitrogen and phosphorus uptake, yield and agronomic traits of oat cultivars as affected by fertilizer N rates under diverse environments","volume":"108","author":"Ma","year":"2017","journal-title":"Nutr. Cycl. Agroecosyst."},{"issue":"2","key":"10.1016\/j.compag.2021.106421_b0060","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1016\/j.compag.2008.03.009","article-title":"Verification of color vegetation indices for automated crop imaging applications","volume":"63","author":"Meyer","year":"2008","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2021.106421_b0065","doi-asserted-by":"crossref","first-page":"109","DOI":"10.2134\/agronj1973.00021962006500010033x","article-title":"Determination of total nitrogen in plant material","volume":"65","author":"Nelson","year":"1973","journal-title":"Agron. J."},{"key":"10.1016\/j.compag.2021.106421_b0070","doi-asserted-by":"crossref","first-page":"991","DOI":"10.5194\/isprs-archives-XLI-B1-991-2016","article-title":"Multi-temporal crop surface models combined with the RGB vegetation index from UAV-based images for forage monitoring in grassland","volume":"41","author":"Possoch","year":"2016","journal-title":"Int. Arch. Photogrammetry, Remote Sens. Spatial Inform. Sci."},{"issue":"2","key":"10.1016\/j.compag.2021.106421_b0075","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/0034-4257(94)90134-1","article-title":"A Modified soil adjusted vegetation index","volume":"48","author":"Qi","year":"1994","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2021.106421_b0080","doi-asserted-by":"crossref","first-page":"1011","DOI":"10.5194\/isprs-archives-XLI-B1-1011-2016","article-title":"Novel approach for estimating nitrogen content in paddy fields using low altitude remote sensing system","volume":"41","author":"Saberioon","year":"2016","journal-title":"Int. Archives Photogrammetry, Remote Sens. Spatial Inform. Sci."},{"key":"10.1016\/j.compag.2021.106421_b0085","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.eja.2015.07.004","article-title":"Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: a review","volume":"70","author":"Sankaran","year":"2015","journal-title":"Eur. J. Agron."},{"issue":"3","key":"10.1016\/j.compag.2021.106421_b0090","doi-asserted-by":"crossref","first-page":"1485","DOI":"10.1109\/TIT.2016.2514489","article-title":"Random forests and kernel methods","volume":"62","author":"Scornet","year":"2015","journal-title":"IEEE Trans. Inf. Theory"},{"key":"10.1016\/j.compag.2021.106421_b0095","doi-asserted-by":"crossref","first-page":"105860","DOI":"10.1016\/j.compag.2020.105860","article-title":"\u201cRice nitrogen nutrition estimation with RGB images and machine learning methods","volume":"180","author":"Shi","year":"2021","journal-title":"Comput. Electron. Agric."},{"issue":"2","key":"10.1016\/j.compag.2021.106421_b0100","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.tplants.2015.10.015","article-title":"Machine learning for high-throughput stress phenotyping in plants Trends","volume":"21","author":"Singh","year":"2016","journal-title":"Plant Sci."},{"issue":"2","key":"10.1016\/j.compag.2021.106421_b0105","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/0034-4257(79)90013-0","article-title":"Red and photographic infrared linear combinations for monitoring vegetation","volume":"8","author":"Tucker","year":"1979","journal-title":"Remote Sens. Environ."},{"issue":"5","key":"10.1016\/j.compag.2021.106421_b0110","doi-asserted-by":"crossref","first-page":"2341","DOI":"10.1016\/j.rse.2007.11.001","article-title":"Angular sensitivity analysis of vegetation indices derived from CHRIS\/PROBA data","volume":"112","author":"Verrelst","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2021.106421_b0115","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.fcr.2016.08.032","article-title":"A critical nitrogen dilution curve for japonica rice based on canopy images","volume":"198","author":"Wang","year":"2016","journal-title":"Field Crops Res."},{"key":"10.1016\/j.compag.2021.106421_b0120","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.fcr.2013.04.007","article-title":"Estimating nitrogen status of rice using the image segmentation of G-R thresholding method","volume":"149","author":"Wang","year":"2013","journal-title":"Field Crops Res."},{"key":"10.1016\/j.compag.2021.106421_b0125","doi-asserted-by":"crossref","first-page":"259","DOI":"10.13031\/2013.27838","article-title":"Color indices for weed identification under various soil, residue, and lighting conditions","volume":"38","author":"Woebbecke","year":"1995","journal-title":"Trans. ASAE"},{"key":"10.1016\/j.compag.2021.106421_b0130","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1016\/j.scitotenv.2014.12.101","article-title":"Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: a review","volume":"512\u2013513","author":"Wu","year":"2015","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.compag.2021.106421_b0135","doi-asserted-by":"crossref","first-page":"20","DOI":"10.3390\/s19204416","article-title":"Evaluation of aboveground nitrogen content of winter wheat using digital imagery of unmanned aerial vehicles","volume":"19","author":"Yang","year":"2019","journal-title":"Sensors (Basel)"},{"issue":"3","key":"10.1016\/j.compag.2021.106421_b0140","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1007\/s11119-018-9600-7","article-title":"Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery","volume":"20","author":"Zheng","year":"2019","journal-title":"Precis. Agric."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169921004385?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169921004385?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,10]],"date-time":"2023-01-10T10:43:08Z","timestamp":1673347388000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169921004385"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10]]},"references-count":28,"alternative-id":["S0168169921004385"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2021.106421","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2021,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Estimation of nitrogen nutrition index in rice from UAV RGB images coupled with machine learning algorithms","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2021.106421","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106421"}}