{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T05:45:27Z","timestamp":1740116727580,"version":"3.37.3"},"reference-count":60,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100002855","name":"Ministry of Science and Technology of the People's Republic of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002855","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007162","name":"Guangdong Provincial Department of Science and Technology","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100007162","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010226","name":"Guangdong Province Department of Education","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100010226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1016\/j.compag.2021.106384","type":"journal-article","created":{"date-parts":[[2021,8,19]],"date-time":"2021-08-19T09:58:10Z","timestamp":1629367090000},"page":"106384","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["Fast and accurate detection of lactating sow nursing behavior with CNN-based optical flow and features"],"prefix":"10.1016","volume":"189","author":[{"given":"Haiming","family":"Gan","sequence":"first","affiliation":[]},{"given":"Shimei","family":"Li","sequence":"additional","affiliation":[]},{"given":"Mingqiang","family":"Ou","sequence":"additional","affiliation":[]},{"given":"Xiaofan","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Kai","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Yueju","family":"Xue","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.compag.2021.106384_b0005","first-page":"76","article-title":"Piglet survival in early lactation: a review","volume":"6","author":"Alonso-Spilsbury","year":"2007","journal-title":"J. Animal Veterinary Adv."},{"key":"10.1016\/j.compag.2021.106384_b0010","doi-asserted-by":"crossref","unstructured":"Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B., 2014. 2D Human Pose Estimation: New Benchmark and State of the Art Analysis. CVPR, pp: 3686\u20133693.","DOI":"10.1109\/CVPR.2014.471"},{"key":"10.1016\/j.compag.2021.106384_b0015","first-page":"941","article-title":"Tracking without bells and whistles","author":"Bergmann","year":"2019","journal-title":"ICCV"},{"key":"10.1016\/j.compag.2021.106384_b0020","article-title":"Two-stream convolutional network with multi-level feature fusion for categorization of human action from videos","author":"Bhattacharjee","year":"2017","journal-title":"Pattern Recogn. Mach. Intell."},{"key":"10.1016\/j.compag.2021.106384_b0025","doi-asserted-by":"crossref","first-page":"380","DOI":"10.1016\/j.compag.2017.09.013","article-title":"Image motion feature extraction for recognition of aggressive behaviors among group-housed pigs","volume":"142","author":"Chen","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2021.106384_b0030","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.jveb.2017.01.003","article-title":"Sow and piglet behavioral associations in farrowing pens with temporary crating and in farrowing crates","volume":"20","author":"Chidgey","year":"2017","journal-title":"J. Veterinary Behav.-Clin. Appl. Res."},{"issue":"10","key":"10.1016\/j.compag.2021.106384_b0035","doi-asserted-by":"crossref","first-page":"12929","DOI":"10.3390\/s131012929","article-title":"Automatic detection and recognition of pig wasting diseases using sound data in audio surveillance systems","volume":"13","author":"Chung","year":"2013","journal-title":"Sensors"},{"issue":"1","key":"10.1016\/j.compag.2021.106384_b0040","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.applanim.2013.02.001","article-title":"In search of the behavioural correlates of optical flow patterns in the automated assessment of broiler chicken welfare","volume":"145","author":"Dawkins","year":"2013","journal-title":"Appl. Animal Behav. Sci."},{"key":"10.1016\/j.compag.2021.106384_b0045","doi-asserted-by":"crossref","first-page":"2026","DOI":"10.2527\/2000.7882026x","article-title":"The influence of suckling interval on milk production of sows","volume":"78","author":"Auldist","year":"2000","journal-title":"J. Animal Sci."},{"key":"10.1016\/j.compag.2021.106384_b0050","first-page":"1933","article-title":"Convolutional two-stream network fusion for video action recognition","author":"Feichtenhofer","year":"2016","journal-title":"CVPR"},{"key":"10.1016\/j.compag.2021.106384_b0055","first-page":"2758","article-title":"FlowNet: learning optical flow with convolutional networks","author":"Fischer","year":"2015","journal-title":"ICCV"},{"key":"10.1016\/j.compag.2021.106384_b0060","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1163\/156853976X00109","article-title":"The nursing. Posture of domestic sows and related behaviour","volume":"57","author":"Fraser","year":"1976","journal-title":"Behaviour"},{"key":"10.1016\/j.compag.2021.106384_b0065","first-page":"350","article-title":"Detect-and-track:efficient pose estimation in videos","author":"Girdhar","year":"2018","journal-title":"CVPR"},{"key":"10.1016\/j.compag.2021.106384_b0070","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.compag.2015.09.021","article-title":"Pig herd monitoring and undesirable tripping and stepping prevention","volume":"119","author":"Gronskyte","year":"2015","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2021.106384_b0075","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.biosystemseng.2015.10.002","article-title":"Monitoring pig movement at the slaughterhouse using optical flow and modified angular histograms","volume":"141","author":"Gronskyte","year":"2016","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2021.106384_b0080","doi-asserted-by":"crossref","first-page":"104828","DOI":"10.1016\/j.compag.2019.05.037","article-title":"Detection of cow mounting behavior using region geometry and optical flow characteristics","volume":"163","author":"Guo","year":"2019","journal-title":"Comput. Electron. Agric."},{"issue":"1","key":"10.1016\/j.compag.2021.106384_b0085","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/S0168-1591(99)00048-9","article-title":"Maternal behaviour of domestic sows and crosses between domestic sows and wild boar","volume":"65","author":"Gustafsson","year":"1999","journal-title":"Appl. Animal Behav. Sci."},{"key":"10.1016\/j.compag.2021.106384_b0090","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep Residual Learning for Image Recognition. IEEE, pp. 770\u2013778. https:\/\/doi.org\/10.1109\/CVPR.2016.90.","DOI":"10.1109\/CVPR.2016.90"},{"issue":"4","key":"10.1016\/j.compag.2021.106384_b0095","first-page":"814","article-title":"What makes for effective detection proposals?","volume":"38","author":"Hosang","year":"2016","journal-title":"IEEE"},{"key":"10.1016\/j.compag.2021.106384_b0100","first-page":"1647","article-title":"FlowNet 2.0: evolution of optical flow estimation with deep networks","author":"Ilg","year":"2017","journal-title":"CVPR"},{"key":"10.1016\/j.compag.2021.106384_b0105","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.livsci.2017.06.001","article-title":"The effect of post-farrowing ketoprofen on sow feed intake, nursing behaviour and piglet performance","volume":"202","author":"Ison","year":"2017","journal-title":"Livestock Sci."},{"issue":"1","key":"10.1016\/j.compag.2021.106384_b0110","first-page":"221","article-title":"3D convolutional neural networks for human action recognition","volume":"35","author":"Ji","year":"2013","journal-title":"IEEE"},{"key":"10.1016\/j.compag.2021.106384_b0115","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.compag.2016.04.026","article-title":"Automatic recognition of lactating sow behaviors through depth image processing","volume":"125","author":"Lao","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2021.106384_b0120","series-title":"Conference Proceedings","first-page":"3904","article-title":"Image based diagnosis of cortical cataract","author":"Li","year":"2008"},{"key":"10.1016\/j.compag.2021.106384_b0125","first-page":"1","article-title":"Real-time optical flow-based video stabilization for unmanned aerial vehicles","volume":"6","author":"Lim","year":"2017","journal-title":"J. Real-Time Image Process."},{"key":"10.1016\/j.compag.2021.106384_b0130","first-page":"740","article-title":"Microsoft COCO: common objects in context","volume":"8693","author":"Lin","year":"2014","journal-title":"ECCV"},{"key":"10.1016\/j.compag.2021.106384_b0135","first-page":"4566","article-title":"SelFlow: self-supervised learning of optical flow","author":"Liu","year":"2019","journal-title":"CVPR"},{"key":"10.1016\/j.compag.2021.106384_b0140","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.biosystemseng.2020.04.007","article-title":"A computer vision-based method for spatial-temporal action recognition of tail-biting behaviour in group-housed pigs","volume":"195","author":"Liu","year":"2020","journal-title":"Biosyst. Eng."},{"issue":"1","key":"10.1016\/j.compag.2021.106384_b0145","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/S0168-1591(96)01144-6","article-title":"Peripartum sows in three farrowing crates: posture patterns and behavioural activities","volume":"58","author":"Lou","year":"1998","journal-title":"Appl. Animal Behav. Sci."},{"key":"10.1016\/j.compag.2021.106384_b0150","doi-asserted-by":"crossref","first-page":"105087","DOI":"10.1016\/j.compag.2019.105087","article-title":"A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture","author":"M\u00e5l\u00f8y","year":"2019","journal-title":"Comput. Electron. Agric."},{"issue":"9","key":"10.1016\/j.compag.2021.106384_b0155","doi-asserted-by":"crossref","first-page":"942","DOI":"10.1007\/s11263-018-1082-6","article-title":"What makes good synthetic training data for learning disparity and optical flow estimation?","volume":"126","author":"Mayer","year":"2018","journal-title":"Int. J. Comput. Vis."},{"issue":"10","key":"10.1016\/j.compag.2021.106384_b0160","doi-asserted-by":"crossref","first-page":"1104","DOI":"10.1016\/j.cviu.2010.07.006","article-title":"Illumination-robust variational optical flow using cross-correlation","volume":"114","author":"Molnar","year":"2010","journal-title":"Comput. Vis. Image Understand."},{"key":"10.1016\/j.compag.2021.106384_b0165","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.biosystemseng.2014.01.005","article-title":"Classification of aggressive behaviour in pigs by activity index and multilayer feed forward neural network","volume":"119","author":"Oczak","year":"2014","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2021.106384_b0170","first-page":"2720","article-title":"Optical flow estimation using a spatial pyramid network","author":"Ranjan","year":"2017","journal-title":"CVPR"},{"issue":"7743","key":"10.1016\/j.compag.2021.106384_b0175","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1038\/s41586-019-0912-1","article-title":"Deep learning and process understanding for data-driven Earth system science","volume":"566","author":"Reichstein","year":"2019","journal-title":"Nature"},{"issue":"6","key":"10.1016\/j.compag.2021.106384_b0180","first-page":"1137","article-title":"Faster R-CNN: towards real-time object detection with region proposal networks","volume":"39","author":"Ren","year":"2017","journal-title":"IEEE"},{"key":"10.1016\/j.compag.2021.106384_b0185","first-page":"369","article-title":"Benchmarking and error diagnosis in multi-instance pose estimation","author":"Ronchi","year":"2017","journal-title":"IEEE"},{"key":"10.1016\/j.compag.2021.106384_b0190","first-page":"308","article-title":"Improved bilinear interpolation method for image fast processing","author":"Sa","year":"2014","journal-title":"IEEE"},{"key":"10.1016\/j.compag.2021.106384_b0195","first-page":"236","article-title":"Pre-weaning mortality in pig-causes and management","volume":"2","author":"Shankar","year":"2009","journal-title":"Veterinary World"},{"key":"10.1016\/j.compag.2021.106384_b0200","first-page":"1874","article-title":"Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network","author":"Shi","year":"2016","journal-title":"CVPR"},{"key":"10.1016\/j.compag.2021.106384_b0205","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s40537-019-0197-0","article-title":"A survey on image data augmentation for deep learning","volume":"6","author":"Shorten","year":"2019","journal-title":"J. Big Data."},{"key":"10.1016\/j.compag.2021.106384_b0210","unstructured":"Simonyan, K., Zisserman, A., 2014. Two-Stream Convolutional Networks for Action Recognition in Videos. https:\/\/arxiv.org\/pdf\/1406.2199."},{"key":"10.1016\/j.compag.2021.106384_b0215","doi-asserted-by":"crossref","first-page":"1223","DOI":"10.2527\/1997.7551223x","article-title":"The role of nursing frequency in milk production in domestic pigs","volume":"75","author":"Spinka","year":"1997","journal-title":"J. Animal Sci."},{"key":"10.1016\/j.compag.2021.106384_b0220","doi-asserted-by":"crossref","first-page":"e0156581","DOI":"10.1371\/journal.pone.0156581","article-title":"Consequences for piglet performance of group housing lactating sows at one, two, or three weeks post-farrowing","volume":"11","author":"Thomsson","year":"2016","journal-title":"PLOS One"},{"issue":"2\u20133","key":"10.1016\/j.compag.2021.106384_b0225","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/S0301-6226(02)00154-9","article-title":"Metabolic state of the sow, nursing behaviour and milk production","volume":"79","author":"Valros","year":"2003","journal-title":"Livestock Prod. Sci."},{"issue":"2","key":"10.1016\/j.compag.2021.106384_b0230","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/S0168-1591(02)00006-0","article-title":"Nursing behaviour of sows during 5 weeks lactation and effects on piglet growth","volume":"76","author":"Valros","year":"2002","journal-title":"Appl. Animal Behav. Sci."},{"issue":"1","key":"10.1016\/j.compag.2021.106384_b0235","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.applanim.2003.11.004","article-title":"Maternal feed intake, but not feed composition affects postural behaviour and nursing frequency of lactating primiparous sows","volume":"86","author":"Van den Brand","year":"2004","journal-title":"Appl. Animal Behav. Sci."},{"key":"10.1016\/j.compag.2021.106384_b0240","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.compag.2014.03.010","article-title":"Image feature extraction for classification of aggressive interactions among pigs","volume":"104","author":"Viazzi","year":"2014","journal-title":"Comput. Electron. Agric."},{"issue":"1","key":"10.1016\/j.compag.2021.106384_b0245","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.yhbeh.2007.03.014","article-title":"Stress, behaviour and reproductive performance in female cattle and pigs","volume":"52","author":"Von Borell","year":"2007","journal-title":"Hormones Behav."},{"issue":"3","key":"10.1016\/j.compag.2021.106384_b0250","first-page":"634","article-title":"Two-stream 3-D convNet fusion for action recognition in videos with arbitrary size and length","volume":"20","author":"Wang","year":"2017","journal-title":"IEEE"},{"key":"10.1016\/j.compag.2021.106384_b0255","first-page":"423","article-title":"Color image optical flow estimation algorithm with shadow suppression","author":"Wei","year":"2013","journal-title":"IEEE"},{"key":"10.1016\/j.compag.2021.106384_b0260","doi-asserted-by":"crossref","unstructured":"Wulff, J., Butler, D., Stanley, G., Black, M., 2012. Lessons and insights from creating a synthetic optical flow benchmark. ECCV. https:\/\/doi.org\/10.1007\/978-3-642-33868-7_17.","DOI":"10.1007\/978-3-642-33868-7_17"},{"key":"10.1016\/j.compag.2021.106384_b0265","doi-asserted-by":"crossref","first-page":"105048","DOI":"10.1016\/j.compag.2019.105048","article-title":"Automated video analysis of sow nursing behavior based on fully convolutional network and oriented optical flow","volume":"167","author":"Yang","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2021.106384_b0270","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.biosystemseng.2020.01.016","article-title":"An automatic recognition framework for sow daily behaviours based on motion and image analyses","volume":"192","author":"Yang","year":"2020","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2021.106384_b0275","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1016\/j.biosystemseng.2018.09.011","article-title":"Automatic recognition of sow nursing behaviour using deep learning-based segmentation and spatial and temporal features","volume":"175","author":"Yang","year":"2018","journal-title":"Biosyst. Eng."},{"issue":"12","key":"10.1016\/j.compag.2021.106384_b0280","first-page":"2878","article-title":"Articulated human detection with flexible mixtures of parts","volume":"35","author":"Yang","year":"2013","journal-title":"IEEE"},{"key":"10.1016\/j.compag.2021.106384_b0285","doi-asserted-by":"crossref","unstructured":"Yin, Z., Darrell, T., Yu, F., 2018. Hierarchical Discrete Distribution Decomposition for Match Density Estimation. https:\/\/arxiv.org\/abs\/1812.06264.","DOI":"10.1109\/CVPR.2019.00620"},{"key":"10.1016\/j.compag.2021.106384_b0290","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.neucom.2019.08.040","article-title":"Optical flow estimation using channel attention mechanism and dilated convolutional neural networks","volume":"368","author":"Zhai","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compag.2021.106384_b0295","doi-asserted-by":"crossref","first-page":"383","DOI":"10.1016\/j.procs.2015.07.315","article-title":"A new multi-channels sequence recognition framework using deep convolutional neural network","volume":"53","author":"Zhang","year":"2015","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.compag.2021.106384_b0300","doi-asserted-by":"crossref","unstructured":"Zhu, Y., Lan, Z., Newsam, S., Hauptmann, A., 2019. Hidden Two-Stream Convolutional Networks for Action Recognition. https:\/\/arxiv.org\/abs\/1704.00389.","DOI":"10.1007\/978-3-030-20893-6_23"}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169921004014?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169921004014?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,10]],"date-time":"2023-01-10T10:40:56Z","timestamp":1673347256000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169921004014"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10]]},"references-count":60,"alternative-id":["S0168169921004014"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2021.106384","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2021,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Fast and accurate detection of lactating sow nursing behavior with CNN-based optical flow and features","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2021.106384","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106384"}}