{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:09:06Z","timestamp":1726762146001},"reference-count":118,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,12,1]],"date-time":"2020-12-01T00:00:00Z","timestamp":1606780800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,10,16]],"date-time":"2021-10-16T00:00:00Z","timestamp":1634342400000},"content-version":"am","delay-in-days":319,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2020,12]]},"DOI":"10.1016\/j.compag.2020.105815","type":"journal-article","created":{"date-parts":[[2020,10,16]],"date-time":"2020-10-16T11:19:15Z","timestamp":1602847155000},"page":"105815","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":74,"special_numbering":"C","title":["Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual tree attributes"],"prefix":"10.1016","volume":"179","author":[{"given":"Ana Paula Dalla","family":"Corte","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8529-5554","authenticated-orcid":false,"given":"Deivison Venicio","family":"Souza","sequence":"additional","affiliation":[]},{"given":"Franciel Eduardo","family":"Rex","sequence":"additional","affiliation":[]},{"given":"Carlos Roberto","family":"Sanquetta","sequence":"additional","affiliation":[]},{"given":"Midhun","family":"Mohan","sequence":"additional","affiliation":[]},{"given":"Carlos Alberto","family":"Silva","sequence":"additional","affiliation":[]},{"given":"Angelica Maria Almeyda","family":"Zambrano","sequence":"additional","affiliation":[]},{"given":"Gabriel","family":"Prata","sequence":"additional","affiliation":[]},{"given":"Danilo Roberti","family":"Alves de Almeida","sequence":"additional","affiliation":[]},{"given":"Jonathan William","family":"Trautenm\u00fcller","sequence":"additional","affiliation":[]},{"given":"Carine","family":"Klauberg","sequence":"additional","affiliation":[]},{"given":"Anibal","family":"de Moraes","sequence":"additional","affiliation":[]},{"given":"Mateus N.","family":"Sanquetta","sequence":"additional","affiliation":[]},{"given":"Ben","family":"Wilkinson","sequence":"additional","affiliation":[]},{"given":"Eben North","family":"Broadbent","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2020.105815_b0005","doi-asserted-by":"crossref","first-page":"612","DOI":"10.1016\/j.isprsjprs.2009.04.004","article-title":"Spectral discrimination of papyrus vegetation (cyperus papyrus l.) in swamp wetlands using field spectrometry","volume":"64","author":"Adam","year":"2009","journal-title":"ISPRS J. Photogram. Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0010","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1002\/wics.84","article-title":"Multicollinearity","volume":"2","author":"Alin","year":"2010","journal-title":"Wiley Interdiscip. Rev.: Comput. Stat."},{"key":"10.1016\/j.compag.2020.105815_b0015","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/j.rse.2014.03.018","article-title":"Urban tree species mapping using hyperspectral and lidar data fusion","volume":"148","author":"Alonzo","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2020.105815_b0020","first-page":"307","article-title":"Measurement in medicine: the analysis of method comparison studies","volume":"32","author":"Altman","year":"1983","journal-title":"J. Roy. Stat. Soc.: Series D (The Statistician)"},{"key":"10.1016\/j.compag.2020.105815_b0025","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1127\/0941-2948\/2013\/0507","article-title":"K\u00f6ppen\u2019s climate classification map for brazil","volume":"22","author":"Alvares","year":"2013","journal-title":"Meteorol. Z."},{"key":"10.1016\/j.compag.2020.105815_b0030","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.biosystemseng.2020.03.004","article-title":"Moisture content estimation of pinus radiata and eucalyptus globulus from reconstructed leaf reflectance in the SWIR region","volume":"193","author":"Arevalo-Ramirez","year":"2020","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2020.105815_b0035","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1002\/rse2.137","article-title":"UAV-derived estimates of forest structure to inform ponderosa pine forest restoration","volume":"6","author":"Belmonte","year":"2019","journal-title":"Remote Sens. Ecol. Conservat."},{"key":"10.1016\/j.compag.2020.105815_b0040","unstructured":"Biecek, P., 2018. Dalex: explainers for complex predictive models. ArXiv e-prints arXiv:1806.08915."},{"key":"10.1016\/j.compag.2020.105815_b0045","doi-asserted-by":"crossref","first-page":"931","DOI":"10.1016\/j.ijnurstu.2009.10.001","article-title":"Statistical methods for assessing agreement between two methods of clinical measurement","volume":"47","author":"Bland","year":"2010","journal-title":"Int. J. Nursing Stud."},{"key":"10.1016\/j.compag.2020.105815_b0050","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00058655","article-title":"Bagging predictors","volume":"24","author":"Breiman","year":"1996","journal-title":"Machine Learn."},{"key":"10.1016\/j.compag.2020.105815_b0055","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Machine Learn."},{"key":"10.1016\/j.compag.2020.105815_b0060","doi-asserted-by":"crossref","first-page":"1247","DOI":"10.5194\/gmd-7-1247-2014","article-title":"Root mean square error (rmse) or mean absolute error (mae)?\u2013arguments against avoiding rmse in the literature","volume":"7","author":"Chai","year":"2014","journal-title":"Geoscientific Model Develop."},{"key":"10.1016\/j.compag.2020.105815_b0065","series-title":"Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining","first-page":"785","article-title":"Xgboost: A scalable tree boosting system, in","author":"Chen","year":"2016"},{"key":"10.1016\/j.compag.2020.105815_b0070","unstructured":"Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., Chen, K., Mitchell, R., Cano, I., Zhou, T., Li, M., Xie, J., Lin, M., Geng, Y., Li, Y., 2019. xgboost: Extreme Gradient Boosting. https:\/\/CRAN.R-project.org\/package=xgboost. r package version 0.82.1."},{"key":"10.1016\/j.compag.2020.105815_b0075","doi-asserted-by":"crossref","first-page":"863","DOI":"10.3390\/rs12050863","article-title":"Measuring individual tree diameter and height using GatorEye high-density UAV-lidar in an integrated crop-livestock-forest system","volume":"12","author":"Corte","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0080","doi-asserted-by":"crossref","first-page":"2345","DOI":"10.1016\/j.rse.2009.06.013","article-title":"The role of spectral resolution and classifier complexity in the analysis of hyperspectral images of forest areas","volume":"113","author":"Dalponte","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2020.105815_b0085","doi-asserted-by":"crossref","first-page":"1236","DOI":"10.1111\/2041-210X.12575","article-title":"Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data","volume":"7","author":"Dalponte","year":"2016","journal-title":"Methods Ecol. Evol."},{"key":"10.1016\/j.compag.2020.105815_b0090","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/j.rse.2013.04.005","article-title":"High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision","volume":"136","author":"Dandois","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2020.105815_b0095","unstructured":"Datta, D., 2017. blandr: a Bland-Altman Method Comparison package for R. doi:10.5281\/zenodo.824514."},{"key":"10.1016\/j.compag.2020.105815_b0100","doi-asserted-by":"crossref","first-page":"306","DOI":"10.1016\/j.biosystemseng.2009.11.010","article-title":"Modelling total volume of dominant pine trees in reforestations via multivariate analysis and artificial neural network models","volume":"105","author":"Diamantopoulou","year":"2010","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2020.105815_b0105","doi-asserted-by":"crossref","first-page":"1546","DOI":"10.1016\/j.rse.2010.02.009","article-title":"Simulating the impact of discrete-return lidar system and survey characteristics over young conifer and broadleaf forests","volume":"114","author":"Disney","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2020.105815_b0110","doi-asserted-by":"crossref","first-page":"6059","DOI":"10.1080\/01431161.2019.1587201","article-title":"Aboveground forest biomass based on OLSR and an ANN model integrating LiDAR and optical data in a mountainous region of china","volume":"40","author":"Dong","year":"2019","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0115","doi-asserted-by":"crossref","first-page":"424","DOI":"10.1111\/j.1365-2664.2006.01141.x","article-title":"Modelling ecological niches with support vector machines","volume":"43","author":"Drake","year":"2006","journal-title":"J. Appl. Ecol."},{"key":"10.1016\/j.compag.2020.105815_b0120","doi-asserted-by":"crossref","first-page":"1562","DOI":"10.3390\/rs10101562","article-title":"Augmentation of traditional forest inventory and airborne laser scanning with unmanned aerial systems and photogrammetry for forest monitoring","volume":"10","author":"Fankhauser","year":"2018","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0125","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.rse.2014.07.028","article-title":"Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass","volume":"154","author":"Fassnacht","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2020.105815_b0130","article-title":"Implementation of multilayer perceptron (mlp) and radial basis function (rbf) neural networks to predict solution gas-oil ratio of crude oil systems","author":"Fath","year":"2018","journal-title":"Petroleum"},{"key":"10.1016\/j.compag.2020.105815_b0135","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1139\/X07-119","article-title":"Comparison of linear and mixed-effect regression models and ak-nearest neighbour approach for estimation of single-tree biomass","volume":"38","author":"Fehrmann","year":"2008","journal-title":"Can. J. For. Res."},{"key":"10.1016\/j.compag.2020.105815_b0140","unstructured":"Gama, J., Carvalho, A.C.P.d.L., Faceli, K., Lorena, A.C., Oliveira, M., et al., 2015. Extra\u00e7\u00e3o de conhecimento de dados: data mining."},{"key":"10.1016\/j.compag.2020.105815_b0145","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.neucom.2014.09.091","article-title":"A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables","volume":"167","author":"Garc\u00eda-Guti\u00e9rrez","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compag.2020.105815_b0150","first-page":"71","article-title":"Unmanned aerial systems for precision forest inventory purposes: A review and case study","volume":"93","author":"Goodbody","year":"2017","journal-title":"For. Chronicle"},{"key":"10.1016\/j.compag.2020.105815_b0155","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/j.compag.2015.07.004","article-title":"A performance comparison of machine learning methods to estimate the fast-growing forest plantation yield based on laser scanning metrics","volume":"116","author":"G\u00f6rgens","year":"2015","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2020.105815_b0160","series-title":"Econometria B\u00e1sica","author":"Gujarati","year":"2011"},{"key":"10.1016\/j.compag.2020.105815_b0165","series-title":"The Elements of Statistical Learning: Data Mining, Inference, and Prediction","author":"Hastie","year":"2016"},{"key":"10.1016\/j.compag.2020.105815_b0170","doi-asserted-by":"crossref","first-page":"207","DOI":"10.3832\/ifor2735-012","article-title":"Estimation of forest biomass components using airborne LiDAR and multispectral sensors","volume":"12","author":"Hernando","year":"2019","journal-title":"iForest - Biogeosci. For."},{"key":"10.1016\/j.compag.2020.105815_b0175","doi-asserted-by":"crossref","first-page":"645","DOI":"10.1093\/forestry\/cpn038","article-title":"Estimation of forestry stand parameters using laser scanning data in temperate, structurally rich natural european beech (fagus sylvatica) and norway spruce (picea abies) forests","volume":"81","author":"Heurich","year":"2008","journal-title":"Forestry"},{"key":"10.1016\/j.compag.2020.105815_b0180","first-page":"261","article-title":"An\u00e1lise de concord\u00e2ncia entre m\u00e9todos de bland-altman","volume":"29","author":"Hirakata","year":"2009","journal-title":"Clin. Biomed. Res."},{"key":"10.1016\/j.compag.2020.105815_b0185","first-page":"B43D","article-title":"Estimating coniferous forest canopy cover from lidar and multispectral data","author":"Hudak","year":"2006","journal-title":"AGU Fall Meeting Abst."},{"key":"10.1016\/j.compag.2020.105815_b0190","doi-asserted-by":"crossref","first-page":"1339","DOI":"10.1080\/01431160701736489","article-title":"Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests","volume":"29","author":"Hyypp\u00e4","year":"2008","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0195","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1007\/s11355-009-0077-4","article-title":"Estimating stand volume in broad-leaved forest using discrete-return LiDAR: plot-based approach","volume":"6","author":"Ioki","year":"2010","journal-title":"Landscape Ecol. Eng."},{"key":"10.1016\/j.compag.2020.105815_b0200","unstructured":"Isenburg, M., 2019. Lastools\u2014efficient lidar processing software,(version 1.8, licensed). http:\/\/rapidlasso.com\/LAStools. accessed on 11 November 2019."},{"key":"10.1016\/j.compag.2020.105815_b0205","volume":"vol. 112","author":"James","year":"2013"},{"key":"10.1016\/j.compag.2020.105815_b0210","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1126\/science.aaa8415","article-title":"Machine learning: Trends, perspectives, and prospects","volume":"349","author":"Jordan","year":"2015","journal-title":"Science"},{"key":"10.1016\/j.compag.2020.105815_b0215","doi-asserted-by":"crossref","first-page":"5600","DOI":"10.1109\/TGRS.2015.2425916","article-title":"Linear models for airborne-laser-scanning-based operational forest inventory with small field sample size and highly correlated LiDAR data","volume":"53","author":"Junttila","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0220","doi-asserted-by":"crossref","first-page":"1127","DOI":"10.1016\/j.ijrobp.2015.07.2286","article-title":"Machine learning approaches for predicting radiation therapy outcomes: A clinician\u2019s perspective","volume":"93","author":"Kang","year":"2015","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.compag.2020.105815_b0225","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1080\/02827581.2017.1416666","article-title":"Remote sensing and forest inventories in nordic countries \u2013 roadmap for the future","volume":"33","author":"Kangas","year":"2018","journal-title":"Scand. J. For. Res."},{"key":"10.1016\/j.compag.2020.105815_b0230","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18637\/jss.v011.i09","article-title":"kernlab \u2013 an S4 package for kernel methods in R","volume":"11","author":"Karatzoglou","year":"2004","journal-title":"J. Stat. Softw."},{"key":"10.1016\/j.compag.2020.105815_b0235","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/j.jag.2014.10.008","article-title":"Mapping forest biomass from space \u2013 fusion of hyperspectral EO1-hyperion data and tandem-x and WorldView-2 canopy height models","volume":"35","author":"Kattenborn","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"10.1016\/j.compag.2020.105815_b0240","doi-asserted-by":"crossref","first-page":"368","DOI":"10.1016\/j.apenergy.2010.07.021","article-title":"Modeling and prediction of turkey\u2019s electricity consumption using support vector regression","volume":"88","author":"Kavaklioglu","year":"2011","journal-title":"Appl. Energy"},{"key":"10.1016\/j.compag.2020.105815_b0245","doi-asserted-by":"crossref","first-page":"111597","DOI":"10.1016\/j.rse.2019.111597","article-title":"Structure metrics to generalize biomass estimation from lidar across forest types from different continents","volume":"237","author":"Knapp","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2020.105815_b0250","first-page":"3","article-title":"Supervised machine learning: A review of classification techniques","volume":"160","author":"Kotsiantis","year":"2007","journal-title":"Emerg. Artif. Intell. Appl. Comput. Eng."},{"key":"10.1016\/j.compag.2020.105815_b0255","doi-asserted-by":"crossref","first-page":"1432","DOI":"10.3390\/f5061432","article-title":"Quantifying ladder fuels: A new approach using LiDAR","volume":"5","author":"Kramer","year":"2014","journal-title":"Forests"},{"key":"10.1016\/j.compag.2020.105815_b0260","volume":"vol. 810","author":"Kuhn","year":"2013"},{"key":"10.1016\/j.compag.2020.105815_b0265","unstructured":"Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., the R Core Team, Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., Hunt., T., 2016. caret: Classification and Regression Training. https:\/\/CRAN.R-project.org\/package=caret. r package version 6.0-73."},{"key":"10.1016\/j.compag.2020.105815_b0270","first-page":"279","article-title":"Cautionary note about r2","volume":"39","author":"Kv\u00e5lseth","year":"1985","journal-title":"Am. Stat."},{"key":"10.1016\/j.compag.2020.105815_b0275","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/j.rse.2012.01.015","article-title":"Forest structure modeling with combined airborne hyperspectral and LiDAR data","volume":"121","author":"Latifi","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2020.105815_b0280","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.isprsjprs.2014.01.001","article-title":"Above ground biomass estimation in an african tropical forest with lidar and hyperspectral data","volume":"89","author":"Laurin","year":"2014","journal-title":"ISPRS J. Photogram. Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0285","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.compag.2020.105815_b0290","doi-asserted-by":"crossref","first-page":"268","DOI":"10.3390\/f9050268","article-title":"Machine learning approaches for estimating forest stand height using plot-based observations and airborne LiDAR data","volume":"9","author":"Lee","year":"2018","journal-title":"Forests"},{"key":"10.1016\/j.compag.2020.105815_b0295","doi-asserted-by":"crossref","first-page":"3143","DOI":"10.1109\/JSTARS.2014.2304642","article-title":"Forest biomass and carbon stock quantification using airborne LiDAR data: A case study over huntington wildlife forest in the adirondack park","volume":"7","author":"Li","year":"2014","journal-title":"IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0300","first-page":"18","article-title":"Classification and regression by randomforest","volume":"2","author":"Liaw","year":"2002","journal-title":"R News"},{"key":"10.1016\/j.compag.2020.105815_b0305","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1191\/0309133303pp360ra","article-title":"LiDAR remote sensing of forest structure","volume":"27","author":"Lim","year":"2003","journal-title":"Progress Phys. Geography: Earth Environ."},{"key":"10.1016\/j.compag.2020.105815_b0310","doi-asserted-by":"crossref","first-page":"398","DOI":"10.1016\/j.foreco.2004.07.077","article-title":"Simulation study for finding optimal lidar acquisition parameters for forest height retrieval","volume":"214","author":"Lovell","year":"2005","journal-title":"For. Ecol. Manage."},{"key":"10.1016\/j.compag.2020.105815_b0315","doi-asserted-by":"crossref","first-page":"323","DOI":"10.3832\/ifor2980-012","article-title":"Prediction of stem diameter and biomass at individual tree crown level with advanced machine learning techniques. iForest -","volume":"12","author":"Malek","year":"2019","journal-title":"Biogeosci. Forest."},{"key":"10.1016\/j.compag.2020.105815_b0320","doi-asserted-by":"crossref","first-page":"819","DOI":"10.3390\/rs11070819","article-title":"Machine learning techniques for tree species classification using co-registered LiDAR and hyperspectral data","volume":"11","author":"Marrs","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0325","doi-asserted-by":"crossref","first-page":"788","DOI":"10.1139\/cjfr-2016-0296","article-title":"Analysis of spatial correlation in predictive models of forest variables that use LiDAR auxiliary information","volume":"47","author":"Mauro","year":"2017","journal-title":"Can. J. For. Res."},{"key":"10.1016\/j.compag.2020.105815_b0330","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.foreco.2011.06.039","article-title":"Estimating forest attribute parameters for small areas using nearest neighbors techniques","volume":"272","author":"McRoberts","year":"2012","journal-title":"For. Ecol. Manage."},{"key":"10.1016\/j.compag.2020.105815_b0335","doi-asserted-by":"crossref","first-page":"368","DOI":"10.1080\/02827581.2010.496739","article-title":"Advances and emerging issues in national forest inventories","volume":"25","author":"McRoberts","year":"2010","journal-title":"Scand. J. For. Res."},{"key":"10.1016\/j.compag.2020.105815_b0340","first-page":"1367","article-title":"Predicting forest stand characteristics with airborne scanning lidar","volume":"66","author":"Means","year":"2000","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0345","doi-asserted-by":"crossref","first-page":"1069","DOI":"10.1016\/j.rse.2009.12.017","article-title":"Characterizing forest ecological structure using pulse types and heights of airborne laser scanning","volume":"114","author":"Miura","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2020.105815_b0350","first-page":"29","article-title":"Artificial intelligence models to estimate biomass of tropical forest trees","volume":"56","author":"Monta\u00f1o","year":"2017","journal-title":"Polibits"},{"key":"10.1016\/j.compag.2020.105815_b0355","doi-asserted-by":"crossref","first-page":"736","DOI":"10.3390\/f9120736","article-title":"Automatic segmentation of mauritia flexuosa in unmanned aerial vehicle (UAV) imagery using deep learning","volume":"9","author":"Morales","year":"2018","journal-title":"Forests"},{"key":"10.1016\/j.compag.2020.105815_b0360","doi-asserted-by":"crossref","first-page":"566","DOI":"10.1190\/tle36070566.1","article-title":"UAV-based LiDAR acquisition for the derivation of high-resolution forest and ground information","volume":"36","author":"Morsdorf","year":"2017","journal-title":"Lead. Edge"},{"key":"10.1016\/j.compag.2020.105815_b0365","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/S0034-4257(01)00290-5","article-title":"Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data","volume":"80","author":"N\u00e6sset","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2020.105815_b0370","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1080\/02827580310019257","article-title":"Practical large-scale forest stand inventory using a small-footprint airborne scanning laser","volume":"19","author":"N\u00e6sset","year":"2004","journal-title":"Scand. J. For. Res."},{"key":"10.1016\/j.compag.2020.105815_b0375","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1016\/S0034-4257(01)00228-0","article-title":"Estimating tree heights and number of stems in young forest stands using airborne laser scanner data","volume":"78","author":"N\u00e6sset","year":"2001","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2020.105815_b0380","doi-asserted-by":"crossref","first-page":"105332","DOI":"10.1016\/j.compag.2020.105332","article-title":"A machine-learning approach for classifying defects on tree trunks using terrestrial LiDAR","volume":"171","author":"Nguyen","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2020.105815_b0385","doi-asserted-by":"crossref","first-page":"6137","DOI":"10.1016\/j.apm.2012.02.016","article-title":"Support vector machines and neural networks used to evaluate paper manufactured using eucalyptus globulus","volume":"36","author":"Nieto","year":"2012","journal-title":"Appl. Math. Model."},{"key":"10.1016\/j.compag.2020.105815_b0390","doi-asserted-by":"crossref","first-page":"410","DOI":"10.1007\/s40140-017-0239-0","article-title":"Cardiac output monitoring: Validation studies\u2013how results should be presented","volume":"7","author":"Odor","year":"2017","journal-title":"Curr. Anesthesiol. Rep."},{"key":"10.1016\/j.compag.2020.105815_b0395","doi-asserted-by":"crossref","first-page":"100016","DOI":"10.1016\/j.tfp.2020.100016","article-title":"Rapid field identification of cites timber species by deep learning","volume":"2","author":"Olschofsky","year":"2020","journal-title":"Trees For. People"},{"key":"10.1016\/j.compag.2020.105815_b0400","doi-asserted-by":"crossref","first-page":"646","DOI":"10.1016\/j.biombioe.2007.06.022","article-title":"Estimating biomass of individual pine trees using airborne lidar","volume":"31","author":"Popescu","year":"2007","journal-title":"Biomass Bioenergy"},{"key":"10.1016\/j.compag.2020.105815_b0405","doi-asserted-by":"crossref","first-page":"589","DOI":"10.14358\/PERS.70.5.589","article-title":"Seeing the trees in the forest","volume":"70","author":"Popescu","year":"2004","journal-title":"Photogram. Eng. Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0410","doi-asserted-by":"crossref","first-page":"564","DOI":"10.5589\/m03-027","article-title":"Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass","volume":"29","author":"Popescu","year":"2003","journal-title":"Can. J. Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0415","doi-asserted-by":"crossref","first-page":"2786","DOI":"10.1016\/j.rse.2011.01.026","article-title":"Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level","volume":"115","author":"Popescu","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2020.105815_b0420","doi-asserted-by":"crossref","unstructured":"Pretzsch, H., 2009. Forest dynamics, growth, and yield. In: Forest Dynamics, Growth and Yield. Springer, pp. 1\u201339.","DOI":"10.1007\/978-3-540-88307-4_1"},{"key":"10.1016\/j.compag.2020.105815_b0425","unstructured":"Prodan, M., 1965. Holzmesslehre. Technical Report. Sauerl\u00e4nder\u2019s Verlag: Frankfurt."},{"key":"10.1016\/j.compag.2020.105815_b0430","series-title":"R: A Language and Environment for Statistical Computing","author":"R Core Team","year":"2019"},{"key":"10.1016\/j.compag.2020.105815_b0435","first-page":"286","article-title":"Light detection and ranging (lidar): an emerging tool for multiple resource inventory","volume":"103","author":"Reutebuch","year":"2005","journal-title":"J. For."},{"key":"10.1016\/j.compag.2020.105815_b0440","doi-asserted-by":"crossref","unstructured":"Rex, F.E., Corte, A.P.D., do Amaral Machado, S., Silva, C.A., Sanquetta, C.R., 2019. Estimating above-ground biomass of araucaria angustifolia (bertol.) kuntze using LiDAR data. Floresta e Ambiente 26. doi:10.1590\/2179-8087.110717.","DOI":"10.1590\/2179-8087.110717"},{"key":"10.1016\/j.compag.2020.105815_b0445","doi-asserted-by":"crossref","first-page":"1498","DOI":"10.3390\/rs12091498","article-title":"Comparison of statistical modelling approaches for estimating tropical forest aboveground biomass stock and reporting their changes in low-intensity logging areas using multi-temporal LiDAR data","volume":"12","author":"Rex","year":"2020","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0450","doi-asserted-by":"crossref","first-page":"29","DOI":"10.2989\/20702620.2016.1263013","article-title":"Volume estimation of cryptomeria japonica logs in southern brazil using artificial intelligence models","volume":"80","author":"Sanquetta","year":"2018","journal-title":"Southern Forests: J. For. Sci."},{"key":"10.1016\/j.compag.2020.105815_b0455","doi-asserted-by":"crossref","DOI":"10.1186\/1750-0680-8-6","article-title":"On the use of data mining for estimating carbon storage in the trees","volume":"8","author":"Sanquetta","year":"2013","journal-title":"Carbon Balance Manage."},{"key":"10.1016\/j.compag.2020.105815_b0460","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","article-title":"Deep learning in neural networks: An overview","volume":"61","author":"Schmidhuber","year":"2015","journal-title":"Neural Networks"},{"key":"10.1016\/j.compag.2020.105815_b0465","unstructured":"Silva, C.A., Klauberg, C., e Carvalho, S.d.P.C., Hudak, A.T., et al., 2014. Mapping aboveground carbon stocks using lidar data in eucalyptus spp. plantations in the state of s\u00e3o paulo, brazil. Scientia Forestalis. 42 (104), 591\u2013604. 42, 591\u2013604."},{"key":"10.1016\/j.compag.2020.105815_b0470","unstructured":"Porf\u00edrio-da Silva, V., Medrado, M.J.S., Nicodemo, M.L.F., Dereti, R.M., 2010. Arboriza\u00e7\u00e3o de pastagens com esp\u00e9cies florestais madeireiras: implanta\u00e7\u00e3o e manejo. Embrapa Pecu\u00e1ria Sudeste-Folderes\/Folhetos\/Cartilhas (INFOTECA-E)."},{"key":"10.1016\/j.compag.2020.105815_b0475","doi-asserted-by":"crossref","first-page":"840","DOI":"10.1111\/j.1523-1739.2012.01869.x","article-title":"Use of an airborne lidar system to model plant species composition and diversity of mediterranean oak forests","volume":"26","author":"Simonson","year":"2012","journal-title":"Conserv. Biol."},{"key":"10.1016\/j.compag.2020.105815_b0480","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1023\/B:STCO.0000035301.49549.88","article-title":"A tutorial on support vector regression","volume":"14","author":"Smola","year":"2004","journal-title":"Stat. Comput."},{"key":"10.1016\/j.compag.2020.105815_b0485","first-page":"755","article-title":"k-nearest neighbor regression in the estimation of Tectona grandis trunk volume in the state of Par\u00e1, Brazil","volume":"38","author":"Souza","year":"2019","journal-title":"J. Sustainable For."},{"key":"10.1016\/j.compag.2020.105815_b0490","doi-asserted-by":"crossref","unstructured":"Stark, S.C., Leitold, V., Wu, J.L., Hunter, M.O., de Castilho, C.V., Costa, F.R.C., McMahon, S.M., Parker, G.G., Shimabukuro, M.T., Lefsky, M.A., Keller, M., Alves, L.F., Schietti, J., Shimabukuro, Y.E., Brand\u00e3o, D.O., Woodcock, T.K., Higuchi, N., de Camargo, P.B., de Oliveira, R.C., Saleska, S.R., 2012. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol. Lett. 15, 1406\u20131414. doi:10.1111\/j.1461-0248.2012.01864.x.","DOI":"10.1111\/j.1461-0248.2012.01864.x"},{"key":"10.1016\/j.compag.2020.105815_b0495","doi-asserted-by":"crossref","first-page":"378","DOI":"10.3390\/rs70100378","article-title":"Stand volume estimation using the k-NN technique combined with forest inventory data, satellite image data and additional feature variables","volume":"7","author":"Tanaka","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0500","doi-asserted-by":"crossref","first-page":"e0126748","DOI":"10.1371\/journal.pone.0126748","article-title":"Landscape-scale controls on aboveground forest carbon stocks on the osa peninsula, costa rica","volume":"10","author":"Taylor","year":"2015","journal-title":"PLOS One"},{"key":"10.1016\/j.compag.2020.105815_b0505","series-title":"Data Mining with R: Learning with Case Studies","author":"Torgo","year":"2017"},{"key":"10.1016\/j.compag.2020.105815_b0510","article-title":"Classification of forest development stages from national low-density lidar datasets: a comparison of machine learning methods","volume":"15","author":"Valbuena","year":"2016","journal-title":"Revista de Teledetecci\u00f3n"},{"key":"10.1016\/j.compag.2020.105815_b0515","doi-asserted-by":"crossref","unstructured":"Venables, W., Ripley, B., 2002. Modern applied statistics with s. doi:10.1007\/978-0-387-21706-2.","DOI":"10.1007\/978-0-387-21706-2"},{"key":"10.1016\/j.compag.2020.105815_b0520","doi-asserted-by":"crossref","first-page":"e0220096","DOI":"10.1371\/journal.pone.0220096","article-title":"Modelling vegetation understory cover using LiDAR metrics","volume":"14","author":"Venier","year":"2019","journal-title":"PLOS One"},{"key":"10.1016\/j.compag.2020.105815_b0525","doi-asserted-by":"crossref","DOI":"10.3390\/s19245475","article-title":"Foliar moisture content from the spectral signature for wildfire risk assessments in valpara\u00edso-chile","volume":"19","author":"Villacr\u00e9s","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2020.105815_b0530","doi-asserted-by":"crossref","first-page":"7619","DOI":"10.1109\/TGRS.2014.2315649","article-title":"Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data","volume":"52","author":"Wallace","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0535","doi-asserted-by":"crossref","unstructured":"Wan Mohd Jaafar, W.S., Woodhouse, I.H., Silva, C.A., Omar, H., Abdul Maulud, K.N., Hudak, A.T., Klauberg, C., Cardil, A., Mohan, M., 2018. Improving individual tree crown delineation and attributes estimation of tropical forests using airborne lidar data. Forests 9. doi: https:\/\/doi.org\/10.3390\/f9120759.","DOI":"10.3390\/f9120759"},{"key":"10.1016\/j.compag.2020.105815_b0540","doi-asserted-by":"crossref","first-page":"101061","DOI":"10.1016\/j.ecoinf.2020.101061","article-title":"Cross-site learning in deep learning RGB tree crown detection","volume":"56","author":"Weinstein","year":"2020","journal-title":"Ecolog. Informat."},{"key":"10.1016\/j.compag.2020.105815_b0545","doi-asserted-by":"crossref","first-page":"619","DOI":"10.1080\/07038992.2016.1207484","article-title":"Remote sensing technologies for enhancing forest inventories: A review","volume":"42","author":"White","year":"2016","journal-title":"Can. J. Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0550","doi-asserted-by":"crossref","first-page":"1154","DOI":"10.3390\/rs9111154","article-title":"A case study of UAS borne laser scanning for measurement of tree stem diameter","volume":"9","author":"Wieser","year":"2017","journal-title":"Remote Sensing"},{"key":"10.1016\/j.compag.2020.105815_b0555","doi-asserted-by":"crossref","first-page":"3019","DOI":"10.3390\/rs11243019","article-title":"Geometric targets for UAS lidar","volume":"11","author":"Wilkinson","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0560","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1093\/sjaf\/18.2.76","article-title":"Five instruments for measuring tree height: An evaluation","volume":"18","author":"Williams","year":"1994","journal-title":"Southern J. Appl. For."},{"key":"10.1016\/j.compag.2020.105815_b0565","first-page":"827","article-title":"Predicting forest stand variables from lidar data in the great lakes st. lawrence forest of ontario","volume":"84","author":"Woods","year":"2008","journal-title":"For. Chronicle"},{"key":"10.1016\/j.compag.2020.105815_b0570","doi-asserted-by":"crossref","first-page":"908","DOI":"10.3390\/rs11080908","article-title":"Assessment of individual tree detection and canopy cover estimation using unmanned aerial vehicle based light detection and ranging (UAV-LiDAR) data in planted forests","volume":"11","author":"Wu","year":"2019","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0575","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.isprsjprs.2020.08.001","article-title":"See the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning","volume":"168","author":"Xi","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0580","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.isprsjprs.2010.08.003","article-title":"Predicting individual tree attributes from airborne laser point clouds based on the random forests technique","volume":"66","author":"Yu","year":"2011","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.compag.2020.105815_b0585","doi-asserted-by":"crossref","DOI":"10.1186\/s13040-014-0031-3","article-title":"Prediction of protein solvent accessibility using PSO-SVR with multiple sequence-derived features and weighted sliding window scheme","volume":"8","author":"Zhang","year":"2015","journal-title":"BioData Mining"},{"key":"10.1016\/j.compag.2020.105815_b0590","doi-asserted-by":"crossref","first-page":"940","DOI":"10.3390\/rs9090940","article-title":"Estimating forest structural parameters using canopy metrics derived from airborne lidar data in subtropical forests","volume":"9","author":"Zhang","year":"2017","journal-title":"Remote Sensing"}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169920308838?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169920308838?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,10,30]],"date-time":"2021-10-30T18:07:39Z","timestamp":1635617259000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169920308838"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,12]]},"references-count":118,"alternative-id":["S0168169920308838"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2020.105815","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2020,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual tree attributes","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2020.105815","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105815"}}