{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,6]],"date-time":"2024-07-06T20:48:12Z","timestamp":1720298892016},"reference-count":58,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,3,1]],"date-time":"2020-03-01T00:00:00Z","timestamp":1583020800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"Spanish Research Agency","award":["AGL2015-63750-R","RTI2018-094798-B-100"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2020,3]]},"DOI":"10.1016\/j.compag.2020.105292","type":"journal-article","created":{"date-parts":[[2020,2,17]],"date-time":"2020-02-17T11:53:03Z","timestamp":1581940383000},"page":"105292","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["A new predictive model for the outlet turbidity in micro-irrigation sand filters fed with effluents using Gaussian process regression"],"prefix":"10.1016","volume":"170","author":[{"given":"P.J.","family":"Garc\u00eda Nieto","sequence":"first","affiliation":[]},{"given":"E.","family":"Garc\u00eda-Gonzalo","sequence":"additional","affiliation":[]},{"given":"J.","family":"Puig-Bargu\u00e9s","sequence":"additional","affiliation":[]},{"given":"C.","family":"Sol\u00e9-Torres","sequence":"additional","affiliation":[]},{"given":"M.","family":"Duran-Ros","sequence":"additional","affiliation":[]},{"given":"G.","family":"Arbat","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2020.105292_b0005","series-title":"Minimum quality requirements for water reuse in agricultural irrigation and aquifer recharge \u2013 Towards a water reuse regulatory instrument at EU level","author":"Alcalde-Sanz","year":"2017"},{"key":"10.1016\/j.compag.2020.105292_b0010","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.biosystemseng.2015.07.009","article-title":"Pressure drop across sand and recycled glass media used in micro irrigation filters","volume":"137","author":"Bov\u00e9","year":"2015","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2020.105292_b0015","doi-asserted-by":"crossref","first-page":"296","DOI":"10.1016\/j.agwat.2016.06.031","article-title":"Development of a new underdrain for improving the efficiency of microirrigation sand media filters","volume":"179","author":"Bov\u00e9","year":"2017","journal-title":"Agric. Water Manage."},{"key":"10.1016\/j.compag.2020.105292_b0020","doi-asserted-by":"crossref","first-page":"1190","DOI":"10.1137\/0916069","article-title":"A limited-memory algorithm for bound constrained optimization","volume":"16","author":"Byrd","year":"1994","journal-title":"SIAM J. Sci. Comp."},{"issue":"2","key":"10.1016\/j.compag.2020.105292_b0025","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1109\/MGRS.2015.2510084","article-title":"A survey on Gaussian processes for earth-observation data analysis: a comprehensive investigation","volume":"4","author":"Camps-Valls","year":"2016","journal-title":"IEEE Geosci. Remote S. Mag."},{"issue":"16","key":"10.1016\/j.compag.2020.105292_b0030","doi-asserted-by":"crossref","first-page":"1529","DOI":"10.1016\/j.jclepro.2006.07.032","article-title":"Recycling of poor quality urban wastewater by drip irrigation systems","volume":"15","author":"Capra","year":"2007","journal-title":"J. Clean. Prod."},{"key":"10.1016\/j.compag.2020.105292_b0035","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/j.rse.2017.10.030","article-title":"Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data","volume":"204","author":"Chen","year":"2018","journal-title":"Remote Sens. Environ."},{"issue":"1","key":"10.1016\/j.compag.2020.105292_b0040","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.agwat.2008.06.005","article-title":"Effect of filter, emitter and location on clogging when using effluents","volume":"96","author":"Duran-Ros","year":"2009","journal-title":"Agr. Water Manage."},{"key":"10.1016\/j.compag.2020.105292_b0045","unstructured":"Ebden, M., 2015. Gaussian processes: a quick introduction. https:\/\/arxiv.org\/pdf\/1505.02965.pdf."},{"key":"10.1016\/j.compag.2020.105292_b0050","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.cag.2014.01.002","article-title":"Technical section: parallel L-BFGS-B algorithm on GPU","volume":"40","author":"Fei","year":"2014","journal-title":"Comput. Graph."},{"key":"10.1016\/j.compag.2020.105292_b0055","series-title":"Statistics","author":"Freedman","year":"2007"},{"key":"10.1016\/j.compag.2020.105292_b0060","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.compag.2016.04.031","article-title":"A new predictive model for the filtered volume and outlet parameters in micro-irrigation sand filters fed with effluents using the hybrid PSO\u2013SVM\u2013based approach","volume":"125","author":"Garc\u00eda Nieto","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2020.105292_b0065","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.biosystemseng.2018.04.011","article-title":"Pressure drop modelling in sand filters in micro-irrigation using gradient boosted regression trees","volume":"171","author":"Garc\u00eda Nieto","year":"2018","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2020.105292_b0070","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.compag.2017.05.008","article-title":"Modeling pressure drop produced by different filtering media in microirrigation sand filters using the hybrid ABC\u2013MARS\u2013based approach, MLP neural network and M5 model tree","volume":"139","author":"Garc\u00eda Nieto","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2020.105292_b0075","unstructured":"GPy, 2014. A Gaussian process framework in python. http:\/\/github.com\/SheffieldML\/GPy."},{"key":"10.1016\/j.compag.2020.105292_b0080","series-title":"The Elements of Statistical Learning","author":"Hastie","year":"2003"},{"issue":"9","key":"10.1016\/j.compag.2020.105292_b0085","doi-asserted-by":"crossref","first-page":"2225","DOI":"10.2166\/wst.2016.380","article-title":"Predicting the performance of multi-media filters using artificial neural networks","volume":"74","author":"Hawari","year":"2016","journal-title":"Water Sci. Tech."},{"key":"10.1016\/j.compag.2020.105292_b0090","series-title":"2007 IEEE\/RSJ International Conference on Intelligent Robots and Systems","first-page":"1901","article-title":"GP-UKF: Unscented Kalman filters with Gaussian process prediction and observation models","author":"Ko","year":"2007"},{"key":"10.1016\/j.compag.2020.105292_b0095","series-title":"Proceedings 2007 IEEE International Conference on Robotics and Automation","first-page":"742","article-title":"Gaussian processes and reinforcement learning for identification and control of an autonomous blimp","author":"Ko","year":"2007"},{"key":"10.1016\/j.compag.2020.105292_b0100","doi-asserted-by":"crossref","first-page":"556","DOI":"10.1016\/j.ymssp.2017.11.021","article-title":"Gaussian process regression for tool wear prediction","volume":"104","author":"Kong","year":"2018","journal-title":"Mech. Syst. Signal Pr."},{"key":"10.1016\/j.compag.2020.105292_b0105","series-title":"Applied Predictive Modeling","author":"Kuhn","year":"2018"},{"key":"10.1016\/j.compag.2020.105292_b0110","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1007\/BF01589116","article-title":"On the limited memory BFGS method for large scale optimization","volume":"45","author":"Liu","year":"1989","journal-title":"Math. Program."},{"key":"10.1016\/j.compag.2020.105292_b0115","doi-asserted-by":"crossref","first-page":"266","DOI":"10.1016\/j.jhazmat.2018.07.034","article-title":"Modeling of subway indoor air quality using Gaussian process regression","volume":"359","author":"Liu","year":"2018","journal-title":"J. Hazard. Mater."},{"key":"10.1016\/j.compag.2020.105292_b0120","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.jweia.2019.02.002","article-title":"Interpolation of wind pressures using Gaussian process regression","volume":"188","author":"Ma","year":"2019","journal-title":"J. Wind Eng. Ind. Aerod."},{"issue":"3","key":"10.1016\/j.compag.2020.105292_b0125","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1002\/ird.1704","article-title":"Advances and challenges with micro-irrigation","volume":"62","author":"Madramootoo","year":"2013","journal-title":"Irrig. Drain."},{"key":"10.1016\/j.compag.2020.105292_b0130","series-title":"Machine Learning: An Algorithmic Perspective","author":"Marsland","year":"2014"},{"key":"10.1016\/j.compag.2020.105292_b0135","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1016\/j.compag.2013.08.016","article-title":"Artificial neural networks vs. Gene Expression Programming for estimating outlet dissolved oxygen in micro-irrigation sand filters fed with effluents","volume":"99","author":"Mart\u00ed","year":"2013","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2020.105292_b0140","series-title":"Bayesian Analysis with Python","author":"Martin","year":"2018"},{"key":"10.1016\/j.compag.2020.105292_b0145","doi-asserted-by":"crossref","first-page":"751","DOI":"10.1016\/j.jhydrol.2015.10.032","article-title":"Event-based prediction of stream turbidity using a combined cluster analysis and classification tree approach","volume":"530","author":"Mather","year":"2015","journal-title":"J. Hydrol."},{"key":"10.1016\/j.compag.2020.105292_b0150","series-title":"Machine Learning: A Probabilistic Perspective","author":"Murphy","year":"2012"},{"key":"10.1016\/j.compag.2020.105292_b0155","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.jappgeo.2019.02.018","article-title":"Automatic fault detection in seismic data using Gaussian process regression","volume":"163","author":"Noori","year":"2019","journal-title":"J. Appl. Geophys."},{"key":"10.1016\/j.compag.2020.105292_b0160","series-title":"Proceedings of the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS), Proceedings of Machine Learning Research (PMLR). Naha, Okinawa, Japan","first-page":"1743","article-title":"Variable selection for Gaussian processes via sensitivity analysis of the posterior predictive distribution","author":"Paananen","year":"2019"},{"issue":"387","key":"10.1016\/j.compag.2020.105292_b0165","doi-asserted-by":"crossref","first-page":"575","DOI":"10.1080\/01621459.1984.10478083","article-title":"Cross-validation of regression models","volume":"79","author":"Picard","year":"1984","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.compag.2020.105292_b0170","series-title":"2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP)","first-page":"1","article-title":"Projection predictive model selection for Gaussian processes","author":"Piironen","year":"2016"},{"issue":"1","key":"10.1016\/j.compag.2020.105292_b0175","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.biosystemseng.2011.11.005","article-title":"Prediction by neural networks of filtered volume and outlet parameters in micro-irrigation sand filters using effluents","volume":"111","author":"Puig-Bargu\u00e9s","year":"2012","journal-title":"Biosyst. Eng."},{"issue":"4","key":"10.1016\/j.compag.2020.105292_b0180","doi-asserted-by":"crossref","first-page":"1120","DOI":"10.5424\/sjar\/20110904-484-10","article-title":"Private micro-irrigation costs using reclaimed water","volume":"9","author":"Pujol","year":"2011","journal-title":"Span. J. Agric. Res."},{"key":"10.1016\/j.compag.2020.105292_b0185","series-title":"Gaussian Processes in Machine Learning: Summer School on Machine Learning","author":"Rasmussen","year":"2003"},{"key":"10.1016\/j.compag.2020.105292_b0190","series-title":"Gaussian Processes for Machine Learning","author":"Rasmussen","year":"2006"},{"issue":"2\u20133","key":"10.1016\/j.compag.2020.105292_b0195","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/S0378-3774(96)01286-3","article-title":"Control of clogging in drip irrigation with stored treated municipal sewage effluent","volume":"33","author":"Ravina","year":"1997","journal-title":"Agric. Water Manage."},{"key":"10.1016\/j.compag.2020.105292_b0200","series-title":"A First Course in Machine Learning","author":"Rogers","year":"2016"},{"key":"10.1016\/j.compag.2020.105292_b0205","series-title":"The 2010 IEEE\/RSJ International Conference on Intelligent Robots and Systems","first-page":"255","article-title":"Robot learning by demonstration with local Gaussian process regression","author":"Schneider","year":"2010"},{"key":"10.1016\/j.compag.2020.105292_b0210","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jmp.2018.03.001","article-title":"A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions","volume":"85","author":"Schulz","year":"2018","journal-title":"J. Math. Psychol."},{"key":"10.1016\/j.compag.2020.105292_b0215","first-page":"603","article-title":"Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers","volume":"Vol. 12","author":"Seeger","year":"2000"},{"key":"10.1016\/j.compag.2020.105292_b0220","series-title":"Gaussian Process Regression Analysis for Functional Data","author":"Shi","year":"2011"},{"issue":"7","key":"10.1016\/j.compag.2020.105292_b0225","doi-asserted-by":"crossref","first-page":"1346","DOI":"10.3390\/w11071346","article-title":"Assessment of field water uniformity distribution in a microirrigation system using a SCADA system","volume":"11","author":"Sol\u00e9-Torres","year":"2019","journal-title":"Water"},{"key":"10.1016\/j.compag.2020.105292_b0230","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1016\/j.biosystemseng.2019.09.012","article-title":"Effect of underdrain design, media height and filtration velocity on the performance of microirrigation sand filters using reclaimed effluents","volume":"187","author":"Sol\u00e9-Torres","year":"2019","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2020.105292_b0235","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.dss.2019.02.009","article-title":"Advanced turbidity prediction for operational water supply planning","volume":"119","author":"Stevenson","year":"2019","journal-title":"Decis. Support Syst."},{"key":"10.1016\/j.compag.2020.105292_b0240","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1016\/j.watres.2015.12.016","article-title":"Rethinking the sustainability of Israel's irrigation practices in the drylands","volume":"90","author":"Tal","year":"2016","journal-title":"Water Res."},{"key":"10.1016\/j.compag.2020.105292_b0245","series-title":"Principles of Filtration","author":"Tien","year":"2012"},{"issue":"5","key":"10.1016\/j.compag.2020.105292_b0250","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1007\/s00271-014-0436-2","article-title":"Performance of different filter combinations with surface and subsurface drip irrigation systems for utilizing municipal wastewater","volume":"32","author":"Tripathi","year":"2014","journal-title":"Irrigat. Sci."},{"key":"10.1016\/j.compag.2020.105292_b0255","series-title":"Microirrigation for Crop Production. Design, Operation and Management","first-page":"329","article-title":"Application of biological effluent","author":"Trooien","year":"2007"},{"key":"10.1016\/j.compag.2020.105292_b0260","series-title":"Guidelines for Water Reuse","author":"USEPA","year":"2012"},{"key":"10.1016\/j.compag.2020.105292_b0265","unstructured":"Vidales, A., 2019. Machine Learning with Matlab: Gaussian Process Regression, Analysis of Variance and Bayesian Optimization (independently published)."},{"key":"10.1016\/j.compag.2020.105292_b0270","series-title":"All of Statistics: A Concise Course in Statistical Inference","author":"Wasserman","year":"2003"},{"issue":"3","key":"10.1016\/j.compag.2020.105292_b0275","doi-asserted-by":"crossref","first-page":"362","DOI":"10.1002\/ird.1909","article-title":"Reclaimed water filtration efficiency and drip irrigation emitter performance with different combinations of sand and disc filters","volume":"64","author":"Wen-Yong","year":"2015","journal-title":"Irrigat. Drain."},{"key":"10.1016\/j.compag.2020.105292_b0280","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1016\/j.neucom.2018.08.001","article-title":"Gaussian process regression method for forecasting of mortality rates","volume":"316","author":"Wu","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compag.2020.105292_b0285","doi-asserted-by":"crossref","first-page":"270","DOI":"10.1016\/j.agwat.2019.04.025","article-title":"Using an anti-clogging relative index (CRI) to assess emitters rapidly for drip irrigation systems with multiple low-quality water sources","volume":"221","author":"Zhou","year":"2019","journal-title":"Agric. Water Manage."},{"issue":"4","key":"10.1016\/j.compag.2020.105292_b0290","doi-asserted-by":"crossref","first-page":"550","DOI":"10.1145\/279232.279236","article-title":"Algorithm 778: L-BFGS\u2013B: Fortran subroutines for large-scale bound-constrained optimization","volume":"23","author":"Zhu","year":"1997","journal-title":"ACM T. Math. Softw."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169919320575?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169919320575?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,3,30]],"date-time":"2020-03-30T12:13:14Z","timestamp":1585570394000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169919320575"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,3]]},"references-count":58,"alternative-id":["S0168169919320575"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2020.105292","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2020,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A new predictive model for the outlet turbidity in micro-irrigation sand filters fed with effluents using Gaussian process regression","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2020.105292","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105292"}}