{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:51:48Z","timestamp":1732038708427},"reference-count":31,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,11,4]],"date-time":"2019-11-04T00:00:00Z","timestamp":1572825600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"SINTEF Ocean RACE"},{"name":"SalmonInsight project","award":["RCN 280864)"]},{"name":"Centre for Research-based innovation in Aquaculture Technology, Exposed Aquaculture Operations","award":["RCN 237790"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1016\/j.compag.2019.105087","type":"journal-article","created":{"date-parts":[[2019,11,12]],"date-time":"2019-11-12T14:18:38Z","timestamp":1573568318000},"page":"105087","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":81,"special_numbering":"C","title":["A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture"],"prefix":"10.1016","volume":"167","author":[{"given":"H\u00e5kon","family":"M\u00e5l\u00f8y","sequence":"first","affiliation":[]},{"given":"Agnar","family":"Aamodt","sequence":"additional","affiliation":[]},{"given":"Ekrem","family":"Misimi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.compag.2019.105087_b0010","first-page":"288","article-title":"Human action recognition in videos using kinematic features and multiple instance learning","volume":"32","author":"Ali","year":"2010","journal-title":"IEEE Human action recognition in videos using kinematic features and multiple instance learning"},{"key":"10.1016\/j.compag.2019.105087_b0015","unstructured":"Damien, A. et al., 2016. Tflearn. https:\/\/github.com\/tflearn\/tflearn."},{"key":"10.1016\/j.compag.2019.105087_b0020","unstructured":"Damien, A. et al., 2016. Tflearn vgg-16 pretrained model. URL https:\/\/github.com\/tflearn\/models."},{"key":"10.1016\/j.compag.2019.105087_b0025","series-title":"Conference on Computer Vision and Pattern Recognition","first-page":"248","article-title":"ImageNet: A large-scale hierarchical image database","author":"Deng","year":"2009"},{"key":"10.1016\/j.compag.2019.105087_b0030","series-title":"Transactions on Pattern Analysis and Machine Intelligence.","first-page":"677","article-title":"Long-term recurrent convolutional networks for visual recognition and description","volume":"39","author":"Donahue","year":"2017"},{"key":"10.1016\/j.compag.2019.105087_b0035","first-page":"363","article-title":"Two-frame motion estimation based on polynomial expansion","author":"Farneb\u00e4ck","year":"2003","journal-title":"Image Analysis 2749 (SCIA 2003. Lecture Notes in Computer Science)"},{"key":"10.1016\/j.compag.2019.105087_b0040","unstructured":"Fiskeridirektoratet, 2016. Profitability survey on the production of Atlantic salmon and rainbow trout. pp. 1-77. Fiskeridirektoratet. https:\/\/www.fiskeridir.no\/content\/download\/17237\/244931\/version\/6\/file\/rap-lonnsomhet-akvakultur-2015.pdf."},{"key":"10.1016\/j.compag.2019.105087_b0045","doi-asserted-by":"crossref","unstructured":"Hara, K., Kataoka, H., Satoh, Y., 2017. Learning spatio-temporal features with 3d residual networks for action recognition, 2017, pp. 3154\u20133160. http:\/\/doi.org\/10.1109\/ICCVW.2017.373.","DOI":"10.1109\/ICCVW.2017.373"},{"key":"10.1016\/j.compag.2019.105087_b0055","series-title":"Conference on Computer Vision and Pattern Recognition","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"issue":"1","key":"10.1016\/j.compag.2019.105087_b0060","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1109\/TPAMI.2012.59","article-title":"3D convolutional neural networks for human action recognition","volume":"35","author":"Ji","year":"2013","journal-title":"IEEE Transactions on Pattern Analysis and Machine Intelligence"},{"issue":"nil","key":"10.1016\/j.compag.2019.105087_b0065","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/j.compag.2018.02.016","article-title":"Deep learning in agriculture: a survey","volume":"147","author":"Kamilaris","year":"2018","journal-title":"Computers and Electronics in Agriculture"},{"key":"10.1016\/j.compag.2019.105087_b0070","first-page":"261","article-title":"Learning algorithms for classification: a comparison on handwritten digit recognition","author":"LeCun","year":"1995","journal-title":"Neural Networks: The Statistical Mechanics Perspective"},{"issue":"7553","key":"10.1016\/j.compag.2019.105087_b0075","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"#cr-split#-10.1016\/j.compag.2019.105087_b0115.1","doi-asserted-by":"crossref","unstructured":"Varol, G., Laptev, I., Schmid, C., 2018. Long-term temporal convolutions for action recognition. In: Transactions on Pattern Analysis and Machine Intelligence. IEEE. 40","DOI":"10.1109\/TPAMI.2017.2712608"},{"key":"#cr-split#-10.1016\/j.compag.2019.105087_b0115.2","doi-asserted-by":"crossref","unstructured":"(6) (2018) 1510-1517. http:\/\/doi.org\/10.1109\/TPAMI.2017.2712608.","DOI":"10.1109\/TPAMI.2017.2712608"},{"key":"10.1016\/j.compag.2019.105087_b0050","series-title":"Computer Vision \u2013 ECCV 2016","first-page":"630","article-title":"Identity mappings in deep residual networks","author":"He","year":"2016"},{"key":"10.1016\/j.compag.2019.105087_b0085","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1016\/j.compag.2017.05.021","article-title":"Robust classification approach for segmentation of blood defects in cod fillets based on deep convolutional neural networks and support vector machines and calculation of gripper vectors for robotic processing","volume":"139","author":"Misimi","year":"2017","journal-title":"Computers and Electronics in Agriculture"},{"key":"10.1016\/j.compag.2019.105087_b0090","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.compag.2018.12.023","article-title":"Classification of multiple cattle behavior patterns using a recurrent neural network with long short-term memory and inertial measurement units","volume":"157","author":"Peng","year":"2019","journal-title":"Computers and Electronics in Agriculture"},{"issue":"6","key":"10.1016\/j.compag.2019.105087_b0095","doi-asserted-by":"crossref","first-page":"976","DOI":"10.1016\/j.imavis.2009.11.014","article-title":"A survey on vision-based human action recognition","volume":"28","author":"Poppe","year":"2010","journal-title":"Image and Vision Computing"},{"key":"10.1016\/j.compag.2019.105087_b0005","unstructured":"Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Man\u00e9, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Vi\u00e9gas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems, software available from tensorflow.org. https:\/\/www.tensorflow.org\/."},{"key":"10.1016\/j.compag.2019.105087_b0080","doi-asserted-by":"crossref","unstructured":"Ma, S., Bargal, S. A., Zhang, J., Sigal, L., Sclaroff, S., 2017. Do less and achieve more: Training cnns for action recognition utilizing action images from the web, Pattern Recognition 68 (2017) 334 \u2013 345. http:\/\/doi.org\/10.1016\/j.patcog.2017.01.027.","DOI":"10.1016\/j.patcog.2017.01.027"},{"key":"10.1016\/j.compag.2019.105087_b0105","unstructured":"Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition, arXiv: 1409.1556."},{"key":"10.1016\/j.compag.2019.105087_b0110","unstructured":"Soomro, K., Zamir, A.R., Shah, M., 2012. Ucf101: A dataset of 101 human actions classes from videos in the wild. arXiv: 1212.0402."},{"key":"10.1016\/j.compag.2019.105087_b0120","unstructured":"Vaswani, A, Shazeer, N. , Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., N., Kaiser L., Polosukhin, I., 2017. Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30, pp. 5998\u20136008."},{"key":"10.1016\/j.compag.2019.105087_b0100","series-title":"Advances in Neural Information Processing Systems","first-page":"568","article-title":"Two-stream convolutional networks for action recognition in videos","author":"Simonyan","year":"2014"},{"key":"10.1016\/j.compag.2019.105087_b0125","first-page":"28","article-title":"A review of human activity recognition methods","volume":"2","author":"Vrigkas","year":"2015","journal-title":"Frontiesr in Robotics and AI"},{"key":"10.1016\/j.compag.2019.105087_b0130","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.neucom.2015.09.112","article-title":"Arch: Adaptive recurrent-convolutional hybrid networks for long-term action recognition","volume":"178","author":"Xin","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compag.2019.105087_b0135","doi-asserted-by":"crossref","unstructured":"Xu, Z., Hu, J., Deng, W., 2016. Recurrent convolutional neural network for video classification. In: International Conference on Multimedia and Expo (ICME). IEEE. pp. 1\u20136. http:\/\/doi.org\/10.1109\/ICME.2016.7552971.","DOI":"10.1109\/ICME.2016.7552971"},{"key":"10.1016\/j.compag.2019.105087_b0140","doi-asserted-by":"crossref","first-page":"453","DOI":"10.1016\/j.compag.2018.11.002","article-title":"Feeding behavior recognition for group-housed pigs with the faster r-cnn","volume":"155","author":"Yang","year":"2018","journal-title":"Computers and Electronics in Agriculture"},{"key":"10.1016\/j.compag.2019.105087_b0145","series-title":"Conference on Computer Vision and Pattern Recognition","first-page":"4694","article-title":"Beyond short snippets: deep networks for video classification","author":"Yue-Hei Ng","year":"2015"},{"key":"10.1016\/j.compag.2019.105087_b0150","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.compag.2017.02.013","article-title":"Near-infrared imaging to quantify the feeding behavior of fish in aquaculture","volume":"135","author":"Zhou","year":"2017","journal-title":"Computers and Electronics in Agriculture"}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169919313262?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169919313262?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,12,2]],"date-time":"2019-12-02T17:34:54Z","timestamp":1575308094000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169919313262"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,12]]},"references-count":31,"alternative-id":["S0168169919313262"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2019.105087","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2019,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A spatio-temporal recurrent network for salmon feeding action recognition from underwater videos in aquaculture","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2019.105087","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 The Authors. Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"105087"}}