{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:33:35Z","timestamp":1726850015986},"reference-count":59,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,12,1]],"date-time":"2019-12-01T00:00:00Z","timestamp":1575158400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100000368","name":"BRT","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000368","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41601024","31501220"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2019,12]]},"DOI":"10.1016\/j.compag.2019.105066","type":"journal-article","created":{"date-parts":[[2019,10,26]],"date-time":"2019-10-26T04:45:57Z","timestamp":1572065157000},"page":"105066","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":57,"special_numbering":"C","title":["Early detection of tomato spotted wilt virus infection in tobacco using the hyperspectral imaging technique and machine learning algorithms"],"prefix":"10.1016","volume":"167","author":[{"given":"Qing","family":"Gu","sequence":"first","affiliation":[]},{"given":"Li","family":"Sheng","sequence":"additional","affiliation":[]},{"given":"Tianhao","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yuwen","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Zhijun","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Kefeng","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Hao","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Hongkui","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2019.105066_b0005","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/S0169-7439(01)00119-8","article-title":"The successive projections algorithm for variable selection in spectroscopic multicomponent analysis","volume":"57","author":"Ara\u00fajo","year":"2001","journal-title":"Chemometr. Intell. Lab."},{"key":"10.1016\/j.compag.2019.105066_b0010","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/22797254.2017.1391054","article-title":"Detection of Fire Blight disease in pear trees by hyperspectral data","volume":"51","author":"Bagheri","year":"2018","journal-title":"Eur. J. Remote Sens."},{"key":"10.1016\/j.compag.2019.105066_b0015","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1016\/j.compag.2010.12.006","article-title":"Early detection of Fusarium infection in wheat using hyper-spectral imaging","volume":"75","author":"Bauriegel","year":"2011","journal-title":"Comput. Electron. Agr."},{"key":"10.1016\/j.compag.2019.105066_b0020","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1007\/s00138-015-0716-8","article-title":"Generation and application of hyperspectral 3D plant models: methods and challenges","volume":"27","author":"Behmann","year":"2016","journal-title":"Mach. Vision Appl."},{"key":"10.1016\/j.compag.2019.105066_b0025","doi-asserted-by":"crossref","first-page":"85","DOI":"10.3390\/rs10010085","article-title":"Evaluation of the PROSAIL model capabilities for future hyperspectral model environments: a review study","volume":"10","author":"Berger","year":"2018","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2019.105066_b0030","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1111\/j.1439-0434.2004.00815.x","article-title":"Effect of grapevine leafroll on the photosynthesis of field grown grapevine plants (Vitis vinifera L. Cv. Lagrein)","volume":"152","author":"Bertamini","year":"2010","journal-title":"J. Phytopathol."},{"key":"10.1016\/j.compag.2019.105066_b0035","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1109\/MGRS.2013.2244672","article-title":"Hyperspectral remote sensing data analysis and future challenges","volume":"1","author":"Bioucas-Dias","year":"2013","journal-title":"IEEE Geosc. Rem. Sen. M."},{"key":"10.1016\/j.compag.2019.105066_b0040","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"10.1016\/j.compag.2019.105066_b0045","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.eja.2007.02.005","article-title":"Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: non-parametric statistical approaches and physiological implications","volume":"27","author":"Delalieux","year":"2007","journal-title":"Eur. J. Agron."},{"key":"10.1016\/j.compag.2019.105066_b0050","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.geoderma.2017.03.015","article-title":"Prediction of topsoil texture for Region Centre (France) applying model ensemble methods","volume":"298","author":"Dobarco","year":"2017","journal-title":"Geoderma"},{"key":"10.1016\/j.compag.2019.105066_b0055","doi-asserted-by":"crossref","first-page":"4318","DOI":"10.3390\/rs70404318","article-title":"Automatic case-based reasoning approach for landslide detection: integration of object-oriented image analysis and a genetic algorithm","volume":"7","author":"Dou","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2019.105066_b0060","doi-asserted-by":"crossref","first-page":"802","DOI":"10.1111\/j.1365-2656.2008.01390.x","article-title":"A working guide to boosted regression trees","volume":"77","author":"Elith","year":"2008","journal-title":"J. Anim. Ecol."},{"key":"10.1016\/j.compag.2019.105066_b0065","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.jfoodeng.2011.11.028","article-title":"Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef","volume":"110","author":"Elmasry","year":"2012","journal-title":"J. Food Eng."},{"key":"10.1016\/j.compag.2019.105066_b0070","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.jfoodeng.2006.10.016","article-title":"Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry","volume":"81","author":"ElMasry","year":"2007","journal-title":"J. Food Eng."},{"key":"10.1016\/j.compag.2019.105066_b0075","doi-asserted-by":"crossref","first-page":"537","DOI":"10.3390\/bios5030537","article-title":"Current and prospective methods for plant disease detection","volume":"5","author":"Fang","year":"2015","journal-title":"Biosensors"},{"key":"10.1016\/j.compag.2019.105066_b0080","doi-asserted-by":"crossref","first-page":"2350","DOI":"10.1016\/j.rse.2011.04.035","article-title":"On intra-annual EVI variability in the dry season of tropical forest: a case study with MODIS and hyperspectral data","volume":"115","author":"Galvao","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2019.105066_b0085","doi-asserted-by":"crossref","first-page":"6069","DOI":"10.3390\/ijerph110606069","article-title":"Identification and assessment of potential water quality impact factors for drinking-water reservoirs","volume":"11","author":"Gu","year":"2014","journal-title":"Int. J. Env. Res. Pub. He."},{"key":"10.1016\/j.compag.2019.105066_b0090","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/j.renene.2013.05.012","article-title":"A hybrid forecasting approach applied to wind speed time series","volume":"60","author":"Hu","year":"2013","journal-title":"Renew. Energ."},{"key":"10.1016\/j.compag.2019.105066_b0095","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1136\/tc.2009.031799","article-title":"The role of taxation in tobacco control and its potential economic impact in China","volume":"19","author":"Hu","year":"2010","journal-title":"Tob. Control"},{"key":"10.1016\/j.compag.2019.105066_b0100","doi-asserted-by":"crossref","first-page":"992","DOI":"10.1016\/j.ress.2005.11.018","article-title":"Multi-objective optimization using genetic algorithms: a tutorial","volume":"91","author":"Konak","year":"2006","journal-title":"Reliab. Eng. Syst. Safe."},{"key":"10.1016\/j.compag.2019.105066_b0105","first-page":"1142","article-title":"Ground based hyperspectral remote sensing for disease detection of tobacco plants","volume":"20","author":"Krezhova","year":"2014","journal-title":"Bulg. J. Agric. Sci"},{"key":"10.1016\/j.compag.2019.105066_b0110","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.knosys.2010.07.003","article-title":"An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine","volume":"24","author":"Li","year":"2011","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.compag.2019.105066_b0115","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.rse.2005.12.012","article-title":"A spatial\u2013temporal approach to monitoring forest disease spread using multi-temporal high spatial resolution imagery","volume":"101","author":"Liu","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2019.105066_b0120","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1007\/s11947-013-1193-6","article-title":"Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry","volume":"7","author":"Liu","year":"2014","journal-title":"Food Bioprocess Tech."},{"key":"10.1016\/j.compag.2019.105066_b0125","doi-asserted-by":"crossref","unstructured":"Ma, J., Zheng, Z., Tong, Q., Zheng, L., 2003. An application of genetic algorithms on band selection for hyperspectral image classification. In: International Conference on Machine Learning and Cybernetics, vol. 5, pp. 2810\u20132813. https:\/\/doi.org\/10.1109\/ICMLC.2003.1260030.","DOI":"10.1109\/ICMLC.2003.1260030"},{"key":"10.1016\/j.compag.2019.105066_b0130","doi-asserted-by":"crossref","unstructured":"Madufor, N., Perold, W., Opara, U., 2017. Detection of plant diseases using biosensors: a review. VII International Conference on Managing Quality in Chains (MQUIC2017) and II International Symposium on Ornamentals in 1201, pp. 83\u201390. https:\/\/doi.org\/10.17660\/ActaHortic.2018.1201.12.","DOI":"10.17660\/ActaHortic.2018.1201.12"},{"key":"10.1016\/j.compag.2019.105066_b0135","doi-asserted-by":"crossref","first-page":"1942","DOI":"10.3390\/rs10121942","article-title":"Retrieval of maize leaf area index using hyperspectral and multispectral data","volume":"10","author":"Mananze","year":"2018","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2019.105066_b0140","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1111\/j.1744-7348.2007.00153.x","article-title":"Symptom development and distribution of Tomato spotted wilt virus in flue-cured tobacco","volume":"151","author":"Mandal","year":"2007","journal-title":"Ann. Appl. Biol."},{"key":"10.1016\/j.compag.2019.105066_b0145","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s13593-014-0246-1","article-title":"Advanced methods of plant disease detection. A review","volume":"35","author":"Martinelli","year":"2015","journal-title":"Agron. Sustain. Dev."},{"key":"10.1016\/j.compag.2019.105066_b0150","doi-asserted-by":"crossref","first-page":"143","DOI":"10.18474\/0749-8004-37.2.143","article-title":"Impact of thrips (Thysanoptera: Thripidae) management practices on suppression of tomato spotted wilt virus and aphid (Homoptera: Aphididae) control in flue-cured tobacco","volume":"37","author":"McPherson","year":"2002","journal-title":"J. Entomol. Sci."},{"key":"10.1016\/j.compag.2019.105066_b0155","first-page":"307","article-title":"Spectral characteristics of soybean during the vegetative cycle with Landsat 5\/TM images in the Western Paran\u00e1","volume":"29","author":"Mercante","year":"2009","journal-title":"Brazil. Eng. Agr."},{"key":"10.1016\/j.compag.2019.105066_b0160","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10661-015-4996-2","article-title":"Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system","volume":"188","author":"Michez","year":"2016","journal-title":"Environ. Monit. Assess."},{"key":"10.1016\/j.compag.2019.105066_b0165","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.compag.2008.11.007","article-title":"The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars","volume":"66","author":"Naidu","year":"2009","journal-title":"Comput. Electron. Agr."},{"key":"10.1016\/j.compag.2019.105066_b0170","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/j.compag.2019.02.003","article-title":"Optimizing wavelength selection by using informative vectors for parsimonious infrared spectra modelling","volume":"158","author":"Ng","year":"2019","journal-title":"Comput. Electron. Agr."},{"key":"10.1016\/j.compag.2019.105066_b0175","doi-asserted-by":"crossref","first-page":"11","DOI":"10.3348\/kjr.2004.5.1.11","article-title":"Receiver operating characteristic (ROC) curve: practical review for radiologists","volume":"5","author":"Park","year":"2004","journal-title":"Korean J. Radiol."},{"key":"10.1016\/j.compag.2019.105066_b0180","doi-asserted-by":"crossref","first-page":"268","DOI":"10.1016\/j.virusres.2011.03.004","article-title":"Silencing of NbXrn4 facilitates the systemic infection of Tobacco mosaic virus in Nicotiana benthamiana","volume":"158","author":"Peng","year":"2011","journal-title":"Virus Res."},{"key":"10.1016\/j.compag.2019.105066_b0185","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.eswa.2005.01.006","article-title":"A comparative predictive analysis of neural networks (NNs), nonlinear regression and classification and regression tree (CART) models","volume":"29","author":"Razi","year":"2005","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compag.2019.105066_b0190","first-page":"2007","article-title":"Generalized Boosted Models: A guide to the gbm package","volume":"1","author":"Ridgeway","year":"2007","journal-title":"Update"},{"key":"10.1016\/j.compag.2019.105066_b0195","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.envsoft.2014.03.003","article-title":"An insight into machine-learning algorithms to model human-caused wildfire occurrence","volume":"57","author":"Rodrigues","year":"2014","journal-title":"Environ. Modell. Softw."},{"key":"10.1016\/j.compag.2019.105066_b0200","doi-asserted-by":"crossref","first-page":"348","DOI":"10.1016\/j.jmsy.2014.02.007","article-title":"An optimization model for reverse logistics network under stochastic environment by using genetic algorithm","volume":"33","author":"Roghanian","year":"2014","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.compag.2019.105066_b0205","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.compag.2010.06.009","article-title":"Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance","volume":"74","author":"Rumpf","year":"2010","journal-title":"Comput. Electron. Agr."},{"key":"10.1016\/j.compag.2019.105066_b0210","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.strusafe.2015.05.001","article-title":"An empirical comparison of machine learning techniques for dam behaviour modelling","volume":"56","author":"Salazar","year":"2015","journal-title":"Struct. Saf."},{"key":"10.1016\/j.compag.2019.105066_b0215","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.compag.2010.02.007","article-title":"A review of advanced techniques for detecting plant diseases","volume":"72","author":"Sankaran","year":"2010","journal-title":"Comput. Electron. Agr."},{"key":"10.1016\/j.compag.2019.105066_b0220","doi-asserted-by":"crossref","first-page":"278","DOI":"10.2307\/2657019","article-title":"Estimating near-infrared leaf reflectance from leaf structural characteristics","volume":"88","author":"Slaton","year":"2001","journal-title":"Am. J. Bot."},{"key":"10.1016\/j.compag.2019.105066_b0225","doi-asserted-by":"crossref","unstructured":"Surhone, L.M., Timpledon, M.T., Marseken, S.F., Correlation, C., Squares, T.S.O., Analysis, R., 2013. Principal Component Regression. Betascript Publishing, pp. 1954\u20131954. https:\/\/doi.org\/10.1007\/978-3-642-16712-6_100781.","DOI":"10.1007\/978-3-642-16712-6_100781"},{"key":"10.1016\/j.compag.2019.105066_b0230","doi-asserted-by":"crossref","first-page":"5329","DOI":"10.3390\/rs70505329","article-title":"Spectral index for quantifying leaf area index of winter wheat by field hyperspectral measurements: a case study in Gifu prefecture, Central Japan","volume":"7","author":"Tanaka","year":"2015","journal-title":"Remote Sens."},{"key":"10.1016\/j.compag.2019.105066_b0235","doi-asserted-by":"crossref","first-page":"1693","DOI":"10.1080\/01431160701281007","article-title":"Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN)","volume":"29","author":"Wang","year":"2008","journal-title":"Int. J. Remote Sens."},{"key":"10.1016\/j.compag.2019.105066_b0240","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.rse.2017.03.042","article-title":"Hyperspectral characterization of freezing injury and its biochemical impacts in oilseed rape leaves","volume":"195","author":"Wei","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2019.105066_b0245","doi-asserted-by":"crossref","first-page":"394","DOI":"10.1016\/j.ecolind.2014.12.028","article-title":"A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape","volume":"52","author":"Were","year":"2015","journal-title":"Ecol. Ind."},{"key":"10.1016\/j.compag.2019.105066_b0250","doi-asserted-by":"crossref","first-page":"2943","DOI":"10.1007\/s11947-012-0928-0","article-title":"Application of time series hyperspectral imaging (TS-HSI) for determining water distribution within beef and spectral kinetic analysis during dehydration","volume":"6","author":"Wu","year":"2013","journal-title":"Food Bioprocess Tech."},{"key":"10.1016\/j.compag.2019.105066_b0255","doi-asserted-by":"crossref","first-page":"16564","DOI":"10.1038\/srep16564","article-title":"Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging","volume":"5","author":"Xie","year":"2015","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compag.2019.105066_b0260","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1016\/j.jbiotec.2012.02.015","article-title":"A simplified method for constructing artificial microRNAs based on the osa-MIR528 precursor","volume":"160","author":"Yan","year":"2012","journal-title":"J. Biotechnol."},{"key":"10.1016\/j.compag.2019.105066_b0265","doi-asserted-by":"crossref","first-page":"870","DOI":"10.1016\/j.ecolind.2015.08.036","article-title":"Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem","volume":"60","author":"Yang","year":"2016","journal-title":"Ecol. Ind."},{"key":"10.1016\/j.compag.2019.105066_b0270","first-page":"3575","article-title":"Comparison of spectral indices and wavelet transform for estimating chlorophyll content of maize from hyperspectral reflectance","volume":"7","author":"Zhang","year":"2013","journal-title":"J. Appl. Remote Sens."},{"key":"10.1016\/j.compag.2019.105066_b0275","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/S0303-2434(03)00008-4","article-title":"Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing","volume":"4","author":"Zhang","year":"2003","journal-title":"Int. J. Appl. Earth Obs."},{"key":"10.1016\/j.compag.2019.105066_b0280","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.biosystemseng.2013.02.007","article-title":"Detecting macronutrients content and distribution in oilseed rape leaves based on hyperspectral imaging","volume":"115","author":"Zhang","year":"2013","journal-title":"Biosyst. Eng."},{"key":"10.1016\/j.compag.2019.105066_b0285","article-title":"An insight into machine learning algorithms to map the occurrence of soil mattic horizon in the northeastern Qinghai-Tibetan Plateau","author":"Zhi","year":"2017","journal-title":"Pedosphere"},{"key":"10.1016\/j.compag.2019.105066_b0290","doi-asserted-by":"crossref","unstructured":"Zhu, H., Cen, H., Zhang, C., He, Y., 2016. Early Detection and Classification of Tobacco Leaves Inoculated with Tobacco Mosaic Virus Based on Hyperspectral Imaging Technique. 2016 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, pp. 1. https:\/\/doi.org\/10.13031\/aim.20162460422.","DOI":"10.13031\/aim.20162460422"},{"key":"10.1016\/j.compag.2019.105066_b0295","doi-asserted-by":"crossref","first-page":"4125","DOI":"10.1038\/s41598-017-04501-2","article-title":"Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers","volume":"7","author":"Zhu","year":"2017","journal-title":"Sci. Rep."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169919304089?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169919304089?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,12,2]],"date-time":"2019-12-02T12:04:25Z","timestamp":1575288265000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169919304089"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,12]]},"references-count":59,"alternative-id":["S0168169919304089"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2019.105066","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2019,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Early detection of tomato spotted wilt virus infection in tobacco using the hyperspectral imaging technique and machine learning algorithms","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2019.105066","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105066"}}