{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T18:46:59Z","timestamp":1735584419916},"reference-count":19,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,8,1]],"date-time":"2019-08-01T00:00:00Z","timestamp":1564617600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"National Funds by FCT - Portuguese Foundation for Science and Technology"},{"name":"Integrative Research in Environment, Agro-Chains and Technology"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2019,8]]},"DOI":"10.1016\/j.compag.2019.104855","type":"journal-article","created":{"date-parts":[[2019,6,14]],"date-time":"2019-06-14T18:08:02Z","timestamp":1560535682000},"page":"104855","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":27,"special_numbering":"C","title":["Grapevine variety identification using \u201cBig Data\u201d collected with miniaturized spectrometer combined with support vector machines and convolutional neural networks"],"prefix":"10.1016","volume":"163","author":[{"given":"Armando M.","family":"Fernandes","sequence":"first","affiliation":[]},{"given":"Andrei B.","family":"Utkin","sequence":"additional","affiliation":[]},{"given":"Jos\u00e9","family":"Eiras-Dias","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7997-8199","authenticated-orcid":false,"given":"Jorge","family":"Cunha","sequence":"additional","affiliation":[]},{"given":"Jos\u00e9","family":"Silvestre","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8257-0143","authenticated-orcid":false,"given":"Pedro","family":"Melo-Pinto","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2019.104855_b0005","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1255\/jnirs.566","article-title":"Maturity, variety and origin determination in white grapes (Vitis vinifera L.) using near infrared reflectance technology","volume":"13","author":"Arana","year":"2005","journal-title":"J. Infrared Spectrosc."},{"key":"10.1016\/j.compag.2019.104855_b0010","series-title":"Introduction to Numerical Analysis using MATLAB","author":"Butt","year":"2010"},{"key":"10.1016\/j.compag.2019.104855_b0015","doi-asserted-by":"crossref","first-page":"S15","DOI":"10.1016\/j.compag.2009.05.011","article-title":"Soluble solids content and pH prediction and varieties discrimination of grapes based on visible\u2013near infrared spectroscopy","volume":"71","author":"Cao","year":"2010","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2019.104855_b0020","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1961189.1961199","article-title":"LIBSVM: A library for support vector machines","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Trans. Intell. Syst. Technol."},{"key":"10.1016\/j.compag.2019.104855_b0025","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1111\/ajgw.12225","article-title":"Characterisation of the Portuguese grapevine germplasm with 48 single-nucleotide polymorphisms","volume":"22","author":"Cunha","year":"2016","journal-title":"Aust. J. Grape Wine Res."},{"key":"10.1016\/j.compag.2019.104855_b0030","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.compag.2013.08.021","article-title":"Identification of grapevine varieties using leaf spectroscopy and partial least squares","volume":"99","author":"Diago","year":"2013","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2019.104855_b0035","series-title":"Soft Computing for Sustainability Science","first-page":"87","article-title":"A review of the application to emergent subfields in viticulture of local reflectance and interactance spectroscopy combined with soft computing and multivariate analysis","author":"Fernandes","year":"2018"},{"key":"10.1016\/j.compag.2019.104855_b0040","first-page":"1","article-title":"Automatic discrimination of grapevine (Vitis vinifera L.) clones using leaf hyperspectral imaging and partial least squares","author":"Fernandes","year":"2014","journal-title":"J. Agric. Sci."},{"key":"10.1016\/j.compag.2019.104855_b0045","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.asoc.2018.07.059","article-title":"Assessment of grapevine variety discrimination using stem hyperspectral data and AdaBoost of random weight neural networks","volume":"72","author":"Fernandes","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.compag.2019.104855_b0050","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.foodchem.2016.09.024","article-title":"Characterization of neural network generalization in the determination of pH and anthocyanin content of wine grape in new vintages and varieties","volume":"218","author":"Gomes","year":"2017","journal-title":"Food Chem."},{"key":"10.1016\/j.compag.2019.104855_b0055","unstructured":"Guti\u00e9rrez, S., Tardaguila, J., Fern\u00e1ndez-Novales, J., Diago, M.P., 2015b. Data mining and non-invasive proximal sensing for precision viticulture. In: Proceedings of the 2nd Int. Electron. Conf. Sens. Appl."},{"key":"10.1016\/j.compag.2019.104855_b0060","doi-asserted-by":"crossref","first-page":"e0143197","DOI":"10.1371\/journal.pone.0143197","article-title":"Support vector machine and artificial neural network models for the classification of grapevine varieties using a portable NIR spectrophotometer","volume":"10","author":"Guti\u00e9rrez","year":"2015","journal-title":"PloS One"},{"key":"10.1016\/j.compag.2019.104855_b0065","doi-asserted-by":"crossref","first-page":"236","DOI":"10.3390\/s16020236","article-title":"Data mining and NIR spectroscopy in viticulture: applications for plant phenotyping under field conditions","volume":"16","author":"Guti\u00e9rrez","year":"2016","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2019.104855_b0070","doi-asserted-by":"crossref","first-page":"212","DOI":"10.3390\/app8020212","article-title":"Variety identification of single rice seed using hyperspectral imaging combined with convolutional neural network","volume":"8","author":"Qiu","year":"2018","journal-title":"Appl. Sci."},{"key":"10.1016\/j.compag.2019.104855_b0075","unstructured":"Ranking de castas, 2017. Inst Vinha E Vinho. http:\/\/www.ivv.gov.pt\/np4\/35\/?newsId=7501&fileName=Ranking_Castas_2017.xls."},{"key":"10.1016\/j.compag.2019.104855_b0080","doi-asserted-by":"crossref","first-page":"1201","DOI":"10.1016\/j.trac.2009.07.007","article-title":"Review of the most common pre-processing techniques for near-infrared spectra","volume":"28","author":"Rinnan","year":"2009","journal-title":"TrAC Trends Anal. Chem."},{"key":"10.1016\/j.compag.2019.104855_b0085","unstructured":"Tassie, L., 2010. Vine identification\u2013knowing what you have. Grape Wine Res Dev Corp Fact Sheet Aust Gov."},{"key":"10.1016\/j.compag.2019.104855_b0090","series-title":"The Mediterranean Genetic Code - Grapevine and Olive","article-title":"Characterization of grapevines by the use of genetic markers","author":"Tomic","year":"2013"},{"key":"10.1016\/j.compag.2019.104855_b0095","doi-asserted-by":"crossref","first-page":"89","DOI":"10.4028\/www.scientific.net\/AMM.236-237.89","article-title":"Nondestructive discrimination of grape seed varieties using UV-VIS-NIR spectroscopy and chemometrics","author":"Yang","year":"2012","journal-title":"Appl. Mech. Mater. Trans. Tech. Publ."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918310172?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918310172?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,11]],"date-time":"2019-09-11T04:24:40Z","timestamp":1568175880000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169918310172"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,8]]},"references-count":19,"alternative-id":["S0168169918310172"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2019.104855","relation":{},"ISSN":["0168-1699"],"issn-type":[{"value":"0168-1699","type":"print"}],"subject":[],"published":{"date-parts":[[2019,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Grapevine variety identification using \u201cBig Data\u201d collected with miniaturized spectrometer combined with support vector machines and convolutional neural networks","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2019.104855","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104855"}}