{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T10:41:58Z","timestamp":1742380918189,"version":"3.37.3"},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,2,1]],"date-time":"2019-02-01T00:00:00Z","timestamp":1548979200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61472368"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Central Public-interest Scientific Institution Basal Research Fund, China","award":["2016HY-ZD1404"]},{"name":"Key Research and Development Project of Jiangsu Province, China","award":["BE2016627"]},{"name":"Fundamental Research Funds for the Central Universities, China","award":["RP51635B"]},{"name":"Wuxi International Science and Technology Research and Development Cooperative Project, China","award":["CZE02H1706"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2019,2]]},"DOI":"10.1016\/j.compag.2019.01.004","type":"journal-article","created":{"date-parts":[[2019,1,11]],"date-time":"2019-01-11T07:31:15Z","timestamp":1547191875000},"page":"329-338","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":61,"special_numbering":"C","title":["Prediction of dissolved oxygen content in aquaculture using Clustering-based Softplus Extreme Learning Machine"],"prefix":"10.1016","volume":"157","author":[{"given":"Pei","family":"Shi","sequence":"first","affiliation":[]},{"given":"Guanghui","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yongming","family":"Yuan","sequence":"additional","affiliation":[]},{"given":"Guangyan","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Liang","family":"Kuang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.compag.2019.01.004_b0005","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1002\/ep.12448","article-title":"Prediction of output energies for broiler production using linear regression, ann (mlp, rbf), and anfis models","volume":"36","author":"Amid","year":"2017","journal-title":"Environ. Prog. Sustainable Energy"},{"issue":"12","key":"10.1016\/j.compag.2019.01.004_b0010","doi-asserted-by":"crossref","first-page":"9006","DOI":"10.1007\/s11356-013-1876-6","article-title":"Modeling of dissolved oxygen content using artificial neural networks: danube river, north serbia, case study","volume":"20","author":"Antanasijevi\u0107","year":"2013","journal-title":"Environ. Sci. Pollut. Res."},{"issue":"2","key":"10.1016\/j.compag.2019.01.004_b0015","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1016\/j.compag.2012.05.013","article-title":"Prediction of quality parameters for biomass silage: a cfd approach","volume":"93","author":"Bartzanas","year":"2013","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compag.2019.01.004_b0020","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1139\/s06-067","article-title":"Modeling of water temperatures based on stochastic approaches: case study of the Deschutes River","volume":"6","author":"Benyahya","year":"2007","journal-title":"J. Environ. Eng. Sci."},{"key":"10.1016\/j.compag.2019.01.004_b0025","unstructured":"Berndt, D.J., Clifford, J., 1994. Using dynamic time warping to find patterns in time series. In: Workshop on Knowledge Discovery in Databases, vol. 10, pp. 359\u2013370."},{"key":"10.1016\/j.compag.2019.01.004_b0030","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.jneumeth.2015.12.006","article-title":"A real-time spike classification method based on dynamic time warping for extracellular enteric neural recording with large waveform variability","volume":"261","author":"Cao","year":"2016","journal-title":"J. Neurosci. Methods"},{"key":"10.1016\/j.compag.2019.01.004_b0035","series-title":"Proc. the Conference on Industrial Electronics and Applications","first-page":"2137","article-title":"An improved GA-SVM algorithm","author":"Chen","year":"2014"},{"key":"10.1016\/j.compag.2019.01.004_b0040","doi-asserted-by":"crossref","first-page":"586","DOI":"10.1016\/j.engappai.2009.09.015","article-title":"A hybrid neural network and ARIMA model for water quality time series prediction","volume":"23","author":"Faruk","year":"2010","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.compag.2019.01.004_b0045","series-title":"Proceeding of the Conference on Artificial Intelligence and Statistics","article-title":"Deep sparse rectifier neural networks","author":"Glorot","year":"2011"},{"key":"10.1016\/j.compag.2019.01.004_b0050","doi-asserted-by":"crossref","first-page":"16702","DOI":"10.1007\/s11356-017-9283-z","article-title":"Extreme learning machines: a new approach for modeling dissolved oxygen (do) concentration with and without water quality variables as predictors","volume":"24","author":"Heddam","year":"2017","journal-title":"Environ. Sci. Pollut. Res. Int."},{"key":"10.1016\/j.compag.2019.01.004_b0055","series-title":"Proceedings of the 2nd International Scientific Conference on Computer Science","article-title":"Simultaneous prediction of multiple chemical parameters of river water quality with tide","author":"Hatzikos","year":"2005"},{"issue":"2","key":"10.1016\/j.compag.2019.01.004_b0060","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/0893-6080(91)90009-T","article-title":"Approximation capabilities of multilayer feedforward networks","volume":"4","author":"Hornik","year":"1991","journal-title":"Neural Netw."},{"issue":"4","key":"10.1016\/j.compag.2019.01.004_b0065","doi-asserted-by":"crossref","first-page":"461","DOI":"10.13031\/aea.11786","article-title":"A dissolved oxygen prediction method based on k-means clustering and the elm neural network: a case study of the changdang lake, china","volume":"33","author":"Huan","year":"2017","journal-title":"Appl. Eng. Agric."},{"issue":"1\u20133","key":"10.1016\/j.compag.2019.01.004_b0070","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","article-title":"Extreme learning machine: theory and applications","volume":"70","author":"Huang","year":"2006","journal-title":"Neurocomputing"},{"issue":"C","key":"10.1016\/j.compag.2019.01.004_b0075","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1016\/j.patcog.2015.09.014","article-title":"Elm based signature for texture classification","volume":"51","author":"Junior","year":"2016","journal-title":"Pattern Recogn"},{"issue":"4","key":"10.1016\/j.compag.2019.01.004_b0080","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.compag.2013.03.009","article-title":"Prediction of dissolved oxygen content in river crab culture based on least squares support vector regression optimized by improved particle swarm optimization","volume":"95","author":"Liu","year":"2013","journal-title":"Comput. Electron. Agric."},{"issue":"3","key":"10.1016\/j.compag.2019.01.004_b0085","first-page":"155","article-title":"Online prediction for dissolved oxygen of water quality based on support vector machine with time series similar data","volume":"30","author":"Liu","year":"2014","journal-title":"Trans. Chinese Soc. Agric. Eng."},{"key":"10.1016\/j.compag.2019.01.004_b0090","series-title":"Proceedings of the IEEE-Embs International Conference on Biomedical and Health Informatics","first-page":"886","article-title":"Using dynamic time warping for sleep and wake discrimination","author":"Long","year":"2012"},{"issue":"10","key":"10.1016\/j.compag.2019.01.004_b0095","doi-asserted-by":"crossref","first-page":"787","DOI":"10.1016\/j.advengsoft.2011.05.018","article-title":"A cascaded fuzzy inference system for Indian river water quality prediction","volume":"42","author":"Mahapatra","year":"2011","journal-title":"Adv. Eng. Softw."},{"issue":"9","key":"10.1016\/j.compag.2019.01.004_b0100","doi-asserted-by":"crossref","first-page":"1586","DOI":"10.1016\/j.marpolbul.2008.05.021","article-title":"An ANN application for water quality forecasting","volume":"56","author":"Palani","year":"2008","journal-title":"Mar. Pollut. Bull."},{"issue":"2","key":"10.1016\/j.compag.2019.01.004_b0105","doi-asserted-by":"crossref","first-page":"3336","DOI":"10.1016\/j.eswa.2008.01.039","article-title":"A simple and fast algorithm for k-medoids clustering","volume":"36","author":"Park","year":"2009","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compag.2019.01.004_b0110","first-page":"37","article-title":"Towards fuzzy-hard clustering mapping processes","volume":"1","author":"Sassi","year":"2012","journal-title":"Comput. Sci."},{"issue":"1","key":"10.1016\/j.compag.2019.01.004_b0115","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.gsf.2014.10.002","article-title":"State-of-the-art review of some artificial intelligence applications in pile foundations","volume":"7","author":"Shahin","year":"2016","journal-title":"Geosci. Front."},{"issue":"1","key":"10.1016\/j.compag.2019.01.004_b0120","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0894-1777(03)00074-8","article-title":"On the use of a linear interpolation method in the measurement procedure of a seven-hole pressure probe","volume":"28","author":"Silva","year":"2003","journal-title":"Exp. Therm. Fluid Sci."},{"issue":"16","key":"10.1016\/j.compag.2019.01.004_b0125","doi-asserted-by":"crossref","first-page":"1194","DOI":"10.1016\/j.proeng.2012.01.1162","article-title":"Prediction of water quality time series data based on least squares support vector machine","volume":"31","author":"Tan","year":"2012","journal-title":"Procedia Eng."},{"issue":"3\u20134","key":"10.1016\/j.compag.2019.01.004_b0130","doi-asserted-by":"crossref","first-page":"807","DOI":"10.1016\/j.mcm.2012.12.023","article-title":"Study of short-term water quality prediction model based on wavelet neural network","volume":"58","author":"Xu","year":"2013","journal-title":"Math. Comput. Model."},{"issue":"99","key":"10.1016\/j.compag.2019.01.004_b0135","first-page":"1","article-title":"Fast and accurate classification of time series data using extended elm: application in fault diagnosis of air handling units","volume":"PP","author":"Yan","year":"2017","journal-title":"IEEE Trans. Syst. Man Cybernet. Syst."},{"key":"10.1016\/j.compag.2019.01.004_b0140","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.enbuild.2018.10.016","article-title":"Semi-supervised learning for early detection and diagnosis of various air handling unit faults","volume":"181","author":"Yan","year":"2018","journal-title":"Energy Build."},{"key":"10.1016\/j.compag.2019.01.004_b0145","first-page":"214","article-title":"Research on comprehensive ability of Zhejiang Province in typhoon disaster resistance and reduction","volume":"1","author":"Ye","year":"2015","journal-title":"J. Nat. Disasters"},{"key":"10.1016\/j.compag.2019.01.004_b0150","doi-asserted-by":"crossref","first-page":"27292","DOI":"10.1038\/srep27292","article-title":"Dissolved oxygen content prediction in crab culture using a hybrid intelligent method","volume":"6","author":"Yu","year":"2016","journal-title":"Sci. Rep."},{"issue":"3\u20134","key":"10.1016\/j.compag.2019.01.004_b0155","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1007\/s00521-012-0837-1","article-title":"Estimation of effluent quality using pls-based extreme learning machines","volume":"22","author":"Zhao","year":"2013","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.compag.2019.01.004_b0160","first-page":"9","article-title":"Analytical redundancy design for aeroengine sensor fault diagnostics based on SROS-ELM","author":"Zhou","year":"2016","journal-title":"Math. Probl. Eng."},{"issue":"1","key":"10.1016\/j.compag.2019.01.004_b0165","doi-asserted-by":"crossref","first-page":"S3","DOI":"10.1016\/j.compag.2009.10.004","article-title":"A remote wireless system for water quality online monitoring in intensive fish culture","volume":"71","author":"Zhu","year":"2010","journal-title":"Comput. Electron. Agric."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918310421?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918310421?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,1,13]],"date-time":"2021-01-13T11:33:03Z","timestamp":1610537583000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169918310421"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,2]]},"references-count":33,"alternative-id":["S0168169918310421"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2019.01.004","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2019,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Prediction of dissolved oxygen content in aquaculture using Clustering-based Softplus Extreme Learning Machine","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2019.01.004","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}