{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T05:45:52Z","timestamp":1740116752588,"version":"3.37.3"},"reference-count":76,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100007749","name":"LAI data","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100007749","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000780","name":"EC Proposal Reference","doi-asserted-by":"publisher","award":["FP7-311766"],"id":[{"id":"10.13039\/501100000780","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100011081","name":"CREA-SCA Bari","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100011081","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100005651","name":"CREA-CER Foggia","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100005651","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100008245","name":"CNR-IBIMET Florence","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100008245","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electronics in Agriculture"],"published-print":{"date-parts":[[2019,1]]},"DOI":"10.1016\/j.compag.2018.12.027","type":"journal-article","created":{"date-parts":[[2018,12,18]],"date-time":"2018-12-18T12:49:52Z","timestamp":1545137392000},"page":"684-692","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":30,"special_numbering":"C","title":["Modelling fuzzy combination of remote sensing vegetation index for durum wheat crop analysis"],"prefix":"10.1016","volume":"156","author":[{"given":"Teodoro","family":"Semeraro","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8656-6547","authenticated-orcid":false,"given":"Giovanni","family":"Mastroleo","sequence":"additional","affiliation":[]},{"given":"Alessandro","family":"Pomes","sequence":"additional","affiliation":[]},{"given":"Andrea","family":"Luvisi","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1666-8772","authenticated-orcid":false,"given":"Elena","family":"Gissi","sequence":"additional","affiliation":[]},{"given":"Roberta","family":"Aretano","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compag.2018.12.027_b0005","series-title":"Hyperspectral remote sensing of vegetation","first-page":"289","article-title":"Spectral and spatial methods of hyperspectral image analysis for estimation of biophysical and biochemical properties of agricultural crops","author":"Alchanatis","year":"2010"},{"key":"10.1016\/j.compag.2018.12.027_b0010","doi-asserted-by":"crossref","first-page":"1010","DOI":"10.3390\/su9061010","article-title":"iPathology: robotic applications and management of plants and plant diseases","volume":"9","author":"Ampatzidis","year":"2017","journal-title":"Sustainability"},{"key":"10.1016\/j.compag.2018.12.027_b0015","first-page":"36","article-title":"Remotely sensed vegetation indices: theory and applications for crop management","volume":"1","author":"Basso","year":"2004","journal-title":"Ital. J. Agrometeorol."},{"issue":"3","key":"10.1016\/j.compag.2018.12.027_b0020","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1016\/j.rse.2005.10.021","article-title":"Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI","volume":"100","author":"Beck","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.12.027_b0025","doi-asserted-by":"crossref","unstructured":"Bojadziev, G., & Bojadziev, M. 1997. Fuzzy Logic for Business, Finance, and Management, Vol. 12 of Advances in fuzzy systems: applications and theory, World Scientific Publishing Co. Pte. Ltd., Singapore.","DOI":"10.1142\/3312"},{"issue":"2","key":"10.1016\/j.compag.2018.12.027_b0030","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.rse.2006.08.002","article-title":"A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data","volume":"106","author":"Bradley","year":"2007","journal-title":"Remote Sens. Environ."},{"issue":"5","key":"10.1016\/j.compag.2018.12.027_b0035","doi-asserted-by":"crossref","first-page":"628","DOI":"10.1007\/s11119-016-9434-0","article-title":"Analytical models integrated with satellite images for optimized pest management","volume":"17","author":"Bright","year":"2016","journal-title":"Precis. Agric."},{"issue":"1","key":"10.1016\/j.compag.2018.12.027_b0040","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/S0034-4257(99)00035-8","article-title":"Short wave infrared correction to the simple ratio: an image and model analysis","volume":"71","author":"Brown","year":"2000","journal-title":"Remote Sens. Environ."},{"issue":"4","key":"10.1016\/j.compag.2018.12.027_b0045","doi-asserted-by":"crossref","first-page":"716","DOI":"10.1016\/j.rse.2008.11.014","article-title":"Albedo and LAI estimates from FORMOSAT-2 data for crop monitoring","volume":"113","author":"Bsaibes","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.12.027_b0050","doi-asserted-by":"crossref","first-page":"576","DOI":"10.1111\/sum.12066","article-title":"The development of a methodology using fuzzy logic to assess the performance of cropping systems based on a case study of maize in the Po Valley","volume":"29","author":"Carozzi","year":"2013","journal-title":"Soil Use Manage"},{"issue":"2\u20133","key":"10.1016\/j.compag.2018.12.027_b0055","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1016\/S0034-4257(02)00036-6","article-title":"Designing a spectral index to estimate vegetation water content from remote sensing data \u2013 Part 2 validation and applications","volume":"82","author":"Ceccato","year":"2002","journal-title":"Remote Sens. Environ."},{"issue":"1","key":"10.1016\/j.compag.2018.12.027_b0060","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/S0034-4257(01)00191-2","article-title":"Detecting vegetation leaf water content using reflectance in the optical domain","volume":"77","author":"Ceccato","year":"2001","journal-title":"Remote Sens. Environ."},{"issue":"2\u20133","key":"10.1016\/j.compag.2018.12.027_b0065","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1016\/S0034-4257(02)00037-8","article-title":"Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1\u2014theoretical approach","volume":"82","author":"Ceccato","year":"2002","journal-title":"Remote Sens. Environ."},{"issue":"6","key":"10.1016\/j.compag.2018.12.027_b0070","doi-asserted-by":"crossref","first-page":"1447","DOI":"10.2134\/agronj2003.1447","article-title":"Corn (Zea mays L.) yield prediction using multispectral and multidate reflectance","volume":"95","author":"Chang","year":"2003","journal-title":"Agron. J."},{"issue":"4","key":"10.1016\/j.compag.2018.12.027_b0075","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1111\/j.1365-3040.1992.tb00992.x","article-title":"Defining leaf area index for non-flat leaves","volume":"15","author":"Chen","year":"1992","journal-title":"Plant Cell Environ."},{"issue":"1","key":"10.1016\/j.compag.2018.12.027_b0080","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/S0034-4257(01)00300-5","article-title":"Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements","volume":"80","author":"Chen","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.12.027_b0085","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1007\/s10661-005-9006-7","article-title":"Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: an example at corn fields in Western Mexico","volume":"119","author":"Chen","year":"2006","journal-title":"Environ Monitor. Assess."},{"key":"10.1016\/j.compag.2018.12.027_b0090","doi-asserted-by":"crossref","first-page":"414","DOI":"10.1016\/j.jag.2007.02.001","article-title":"Estimation of green grass\/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression","volume":"9","author":"Cho","year":"2007","journal-title":"Int. J. Appl. Earth Observ. Geoinform."},{"key":"10.1016\/j.compag.2018.12.027_b0095","doi-asserted-by":"crossref","first-page":"478","DOI":"10.1016\/j.ecolecon.2006.03.021","article-title":"Biodiversity and ecosystem services: a multi-scale empirical study of the relationship between species richness and net primary production","volume":"61","author":"Costanza","year":"2007","journal-title":"Ecol. Econ."},{"issue":"1","key":"10.1016\/j.compag.2018.12.027_b0100","doi-asserted-by":"crossref","first-page":"1007","DOI":"10.1029\/2002GB001915","article-title":"Environmental control of leaf area production: Implications for vegetation and land-surface modeling","volume":"17","author":"Cowling","year":"2003","journal-title":"Global Biogeochem. Cy."},{"issue":"2011","key":"10.1016\/j.compag.2018.12.027_b0105","doi-asserted-by":"crossref","first-page":"254","DOI":"10.1016\/j.jeem.2010.10.004","article-title":"Robustness and vulnerability of community irrigation systems: the case of the Taos valley acequias","volume":"61","author":"Cox","year":"2011","journal-title":"J. Environ. Econ. Manage."},{"issue":"4","key":"10.1016\/j.compag.2018.12.027_b0110","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1016\/j.isprsjprs.2008.01.001","article-title":"LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements","volume":"63","author":"Darvishzadeh","year":"2008","journal-title":"ISPRS J. Photogramm."},{"key":"10.1016\/j.compag.2018.12.027_b0115","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1016\/j.ecocom.2009.10.006","article-title":"Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making","volume":"7","author":"de Groot","year":"2010","journal-title":"Ecol. Complex."},{"key":"10.1016\/j.compag.2018.12.027_b0120","doi-asserted-by":"crossref","first-page":"8249","DOI":"10.1007\/s10661-014-4001-5","article-title":"Agricultural practices in grasslands detected by spatial remote sensing","volume":"186","author":"Duseux","year":"2014","journal-title":"Environ. Monitor. Assess."},{"issue":"4","key":"10.1016\/j.compag.2018.12.027_b0125","doi-asserted-by":"crossref","first-page":"2843","DOI":"10.3390\/s100402843","article-title":"Active ground optical remote sensing for improved monitoring of seedling stress in nurseries","volume":"10","author":"Eitel","year":"2010","journal-title":"Sensors"},{"key":"10.1016\/j.compag.2018.12.027_b0130","unstructured":"European Parliament, 2014. Precision Agriculture: An Opportunity for EU-Farmers \u2013 Potential Support with the CAP 2014\u20132020. http:\/\/www.europarl.europa.eu\/studies (accessed 03 January 2018)."},{"key":"10.1016\/j.compag.2018.12.027_b0135","doi-asserted-by":"crossref","unstructured":"Facchinetti, G., Mastroleo, G., Paba, S., 2000. \u201cA fuzzy approach to the geography of industrial districts\u201d. Proceedings of the 2000 ACM symposium on Applied Computing, 514\u2013518, Como, March 19\u201321.","DOI":"10.1145\/335603.335938"},{"key":"10.1016\/j.compag.2018.12.027_b0140","unstructured":"FAO, 2017. The future of food and agriculture \u2013 Trends and challenges. Rome, Italy. http:\/\/www.fao.org\/3\/a-i6583e.pdf (accessed 18 January 2018)."},{"issue":"3","key":"10.1016\/j.compag.2018.12.027_b0145","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/S0034-4257(96)00067-3","article-title":"NDWI\u2014a normalized difference water index for remote sensing of vegetation liquid water from space","volume":"58","author":"Gao","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.12.027_b0150","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.biombioe.2017.08.028","article-title":"Soil-related ecosystem services trade-off analysis for sustainable biodiesel production","volume":"114","author":"Gissi","year":"2018","journal-title":"Biomass Bioenergy"},{"key":"10.1016\/j.compag.2018.12.027_b0155","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecoser.2018.03.025","article-title":"Learning on ecosystem services co-production in decision-making from role-playing simulation: comparative analysis from Southeast Europe","author":"Gissi","year":"2018","journal-title":"Ecosyst. Serv."},{"key":"10.1016\/j.compag.2018.12.027_b0160","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1109\/LGRS.2008.915598","article-title":"Synoptic monitoring of gross primary productivity of maize using landsat data","author":"Gitelson","year":"2008","journal-title":"IEEE Geosci. Remote Sensing Lett."},{"key":"10.1016\/j.compag.2018.12.027_b0165","unstructured":"Gallopin G.C. 1994. Agroecosystem Health: a guiding concept for agricultural research. In Nielson N.O., Agroecosystem Health. University of Guelph, Guelph, Canada."},{"issue":"9","key":"10.1016\/j.compag.2018.12.027_b0170","doi-asserted-by":"crossref","first-page":"1853","DOI":"10.1080\/014311699212524","article-title":"Designing optimal spectral indices: a feasibility and proof of concept study","volume":"20","author":"Govaerts","year":"2010","journal-title":"Int. J. Remote Sens."},{"issue":"4","key":"10.1016\/j.compag.2018.12.027_b0175","doi-asserted-by":"crossref","first-page":"542","DOI":"10.1016\/S0034-4257(03)00131-7","article-title":"Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression","volume":"86","author":"Hansen","year":"2003","journal-title":"Remote Sens. Environ."},{"issue":"1","key":"10.1016\/j.compag.2018.12.027_b0180","first-page":"77","article-title":"The influences of soil salinity, growth form, and leaf moisture on the spectral reflectance of Spartina alterniflora canopies","volume":"49","author":"Hardisky","year":"1983","journal-title":"Photogramm. Eng. Rem. S."},{"issue":"1\u20132","key":"10.1016\/j.compag.2018.12.027_b0185","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/S0034-4257(02)00096-2","article-title":"Overview of the radiometric and biophysical performance of the MODIS vegetation indices","volume":"83","author":"Huete","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.12.027_b0190","unstructured":"Huete, A., Ratana, P., Didan, K., Shimabukuro, Y., Barbosa, H., Ferreira, L., & Miura, T. 2003. Seasonal biophysical dynamics along an Amazon eco-climatic gradient using MODIS vegetation indices. Anais Xi SBSR, 05\u201310, April (pp. 665\u2013672). Belo Horizonte, Brasil: Instituto Nacional de Pesquisas Espaciais."},{"issue":"3","key":"10.1016\/j.compag.2018.12.027_b0195","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1016\/S0034-4257(96)00112-5","article-title":"A comparison of vegetation indices over a global set of TM images for EOS-MODIS","volume":"59","author":"Huete","year":"1997","journal-title":"Remote Sens. Environ."},{"issue":"4","key":"10.1016\/j.compag.2018.12.027_b0200","doi-asserted-by":"crossref","first-page":"475","DOI":"10.1016\/j.rse.2003.10.021","article-title":"Vegetation water content mapping using landsat data derived normalized difference water index for corn and soybeans","volume":"92","author":"Jackson","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.12.027_b0205","unstructured":"JECAM 2014, Progress Report 2014. http:\/\/www.jecam.org\/?\/charter\/annual-reports (accessed 20 December 2017)."},{"key":"10.1016\/j.compag.2018.12.027_b0210","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1016\/j.apgeog.2008.10.001","article-title":"Modeling urban leaf area index with AISA+ hyperspectral data","volume":"29","author":"Jensena","year":"2009","journal-title":"Appl. Geograph."},{"issue":"3","key":"10.1016\/j.compag.2018.12.027_b0215","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1016\/j.rse.2005.09.010","article-title":"Image masking for crop yield forecasting using AVHRR NDVI time series imagery","volume":"99","author":"Kastens","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.compag.2018.12.027_b0220","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1094\/PDIS-03-15-0340-FE","article-title":"Plant disease detection by imaging sensors \u2013 parallels and specific demands for precision agriculture and plant phenotyping","volume":"100","author":"Mahlein","year":"2016","journal-title":"Plant Dis."},{"key":"10.1016\/j.compag.2018.12.027_b0225","unstructured":"Latorre, C., Camacho, F., Castrignan\u00f2, A., De Benedetto, D., Stellacci, A.M., Ventrella, D., Campi, P., Rinaldi, M., Maddaluno, C., Mucci, M., Matese, A., & Toscano, P. 2016. Vegetation field data and production of ground-based maps: \u201cCapitanata site, Italy\u201d 18th march and 13th may, 2014. EC Proposal Reference No FP7-311766. Field Campaign and Data Processing report."},{"key":"10.1016\/j.compag.2018.12.027_b0230","doi-asserted-by":"crossref","first-page":"347","DOI":"10.1016\/j.rse.2012.04.002","article-title":"Assessment of vegetation indices for regional crop green LAI estimation from landsat images over multiple growing seasons","volume":"123","author":"Liu","year":"2012","journal-title":"Remote Sens. Environ."},{"issue":"2","key":"10.1016\/j.compag.2018.12.027_b0235","doi-asserted-by":"crossref","first-page":"410","DOI":"10.1016\/j.sjbs.2016.10.003","article-title":"Estimation of gross primary production of irrigated maize using landsat-8 imagery and eddy covariance data","volume":"24","author":"Madugundu","year":"2017","journal-title":"Saudi J. Biol. Sci."},{"issue":"5","key":"10.1016\/j.compag.2018.12.027_b0240","first-page":"593","article-title":"Analysis of GAC NDVI data for cropland identification and yield forecasting in Mediterranean African countries","volume":"67","author":"Maselli","year":"2001","journal-title":"Photogramm Eng. Rem. S."},{"key":"10.1016\/j.compag.2018.12.027_b0245","unstructured":"Ministero delle politiche agricole alimentari e forestali (Mipaaf), 2018. OPENDATA AGRICOLTURA. https:\/\/www.politicheagricole.it\/flex\/cm\/pages\/ServeBLOB.php\/L\/IT\/IDPagina\/6992. (Accessed 29 January 2018)."},{"year":"2005","series-title":"Ecosystems and Human Well-being","author":"MEA","key":"10.1016\/j.compag.2018.12.027_b0250"},{"issue":"3","key":"10.1016\/j.compag.2018.12.027_b0255","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1007\/s11119-006-9002-0","article-title":"Simultaneous identification of plant stresses and diseases in arable crops using proximal optical sensing and self-organising maps","volume":"7","author":"Moshou","year":"2006","journal-title":"Precis. Agric."},{"key":"10.1016\/j.compag.2018.12.027_b0260","doi-asserted-by":"crossref","first-page":"266","DOI":"10.1016\/j.eja.2006.10.007","article-title":"A simple model of regional wheat yield based on NDVI data","volume":"26","author":"Moriondo","year":"2007","journal-title":"Euro. J. Agron."},{"issue":"2","key":"10.1016\/j.compag.2018.12.027_b0265","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1109\/36.377948","article-title":"The interpretation of spectral vegetation indexes","volume":"33","author":"Myneni","year":"1995","journal-title":"IEEE T. Geosci. Remote"},{"key":"10.1016\/j.compag.2018.12.027_b0270","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.compag.2018.05.035","article-title":"Wheat and maize yield forecasting for the Tisza river catchment using MODIS NDVI time series and reported crop statistics","volume":"151","author":"Nagy","year":"2018","journal-title":"Comput. Electron. Agricult."},{"key":"10.1016\/j.compag.2018.12.027_b0275","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.protcy.2013.11.010","article-title":"Drivers of precision agriculture technologies adoption: a literature review","volume":"8","author":"Pierpaoli","year":"2013","journal-title":"Proc. Tech."},{"key":"10.1016\/j.compag.2018.12.027_b0280","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1016\/j.biosystemseng.2013.06.008","article-title":"Getting simultaneous red and near-infrared band data from a single digital camera for plant monitoring applications: theoretical and practical study","volume":"117","author":"Rabatel","year":"2014","journal-title":"Biosyst. Eng."},{"issue":"5","key":"10.1016\/j.compag.2018.12.027_b0285","doi-asserted-by":"crossref","first-page":"564","DOI":"10.1007\/s11119-016-9437-x","article-title":"Registration of visible and near infrared unmanned aerial vehicle images based on fourier-mellin transform","volume":"17","author":"Rabatel","year":"2016","journal-title":"Precis. Agri."},{"key":"10.1016\/j.compag.2018.12.027_b0290","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1016\/j.apgeog.2017.06.017","article-title":"Assessment of land degradation in Mediterranean forests and grazing lands using a landscape unit approach and the normalized difference vegetation index","volume":"86","author":"Riva","year":"2017","journal-title":"Appl.Geograph."},{"key":"10.1016\/j.compag.2018.12.027_b0295","unstructured":"Rouse, J.W., Haas, R.H., Schell, J.A., & Deering, D.W. 1973. Monitoring vegetation systems in the Great Plains with ERTS. In: Proceedings of the Third Earth Resources Technology Satellite- 1 Symposium Volume I: Technical Presentations. NASA SP-351, Washington, DC, 309\u2013317."},{"key":"10.1016\/j.compag.2018.12.027_b0300","unstructured":"STOA, 2016. Precision Agriculture and the Future of Farming in Europe Annex 1: Technical Horizon Scan. European Parliamentary Research Service (EPRS), PE 581.892. http:\/\/www.ep.europa.eu\/stoa\/ (accessed 15 January 2018)."},{"key":"10.1016\/j.compag.2018.12.027_b0305","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.jenvman.2015.11.053","article-title":"GIS Fuzzy Expert System for the assessment of ecosystem vulnerability to fire in managing Mediterranean natural protected areas","volume":"168","author":"Semeraro","year":"2016","journal-title":"J. Environ. Manage."},{"issue":"2","key":"10.1016\/j.compag.2018.12.027_b0310","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1016\/S0034-4257(00)00169-3","article-title":"Classification and change detection using Landsat TM data: when and how to correct atmospheric effects?","volume":"75","author":"Song","year":"2001","journal-title":"Remote Sens. Environ."},{"issue":"50","key":"10.1016\/j.compag.2018.12.027_b0315","doi-asserted-by":"crossref","first-page":"20260","DOI":"10.1073\/pnas.1116437108","article-title":"Global food demand and the sustainable intensification of agriculture","volume":"108","author":"Tilman","year":"2011","journal-title":"P. Natl. Acad. Sci. USA"},{"issue":"3","key":"10.1016\/j.compag.2018.12.027_b0320","doi-asserted-by":"crossref","first-page":"e58210","DOI":"10.1371\/journal.pone.0058210","article-title":"Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management","volume":"8","author":"Torres-Sanchez","year":"2013","journal-title":"PLoS One"},{"issue":"12","key":"10.1016\/j.compag.2018.12.027_b0325","doi-asserted-by":"crossref","first-page":"3468","DOI":"10.1016\/j.rse.2011.08.010","article-title":"Comparison of different vegetation indices for the remote assessment of green leaf area index of crops","volume":"115","author":"Vi\u00f1a","year":"2011","journal-title":"Remote Sens. Environ."},{"year":"1997","series-title":"Fuzzy logic and NeuroFuzzy applications in business and finance","author":"Von Altrock","key":"10.1016\/j.compag.2018.12.027_b0330"},{"key":"10.1016\/j.compag.2018.12.027_b0335","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1016\/j.compag.2017.05.023","article-title":"Estimation of leaf nitrogen concentration in wheat using the MK-SVR algorithm and satellite remote sensing data","volume":"140","author":"Wang","year":"2017","journal-title":"Comput. Electron. Agri."},{"issue":"5","key":"10.1016\/j.compag.2018.12.027_b0340","doi-asserted-by":"crossref","first-page":"818","DOI":"10.2134\/agronj1991.00021962008300050009x","article-title":"Instrument for indirect measurement of canopy architecture","volume":"83","author":"Welles","year":"1991","journal-title":"Agron. J."},{"issue":"3","key":"10.1016\/j.compag.2018.12.027_b0345","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1016\/S0034-4257(02)00129-3","article-title":"Sensitivity of vegetation indices to atmospheric aerosols: continental-scale observations in Northern Asia","volume":"84","author":"Xiao","year":"2003","journal-title":"Remote Sens. Environ."},{"issue":"4","key":"10.1016\/j.compag.2018.12.027_b0350","doi-asserted-by":"crossref","first-page":"519","DOI":"10.1016\/j.rse.2003.11.008","article-title":"Satellite-based modeling of gross primary production in an evergreen needleleaf forest","volume":"89","author":"Xiao","year":"2004","journal-title":"Remote Sens. Environ."},{"issue":"2","key":"10.1016\/j.compag.2018.12.027_b0355","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1016\/j.rse.2004.03.010","article-title":"Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data","volume":"91","author":"Xiao","year":"2004","journal-title":"Remote Sens. Environ."},{"issue":"2","key":"10.1016\/j.compag.2018.12.027_b0360","first-page":"771","article-title":"Estimating winter wheat leaf area index from ground and hyperspectral observations using vegetation indices","volume":"9","author":"Xie","year":"2016","journal-title":"IEEE J-STARS"},{"key":"10.1016\/j.compag.2018.12.027_b0365","first-page":"17","article-title":"Significant remote sensing vegetation indices: a review of developments and applications","author":"Xue","year":"2017","journal-title":"J. Sens."},{"key":"10.1016\/j.compag.2018.12.027_b0370","unstructured":"Yang, Z., Zhao, H., Di, L., & Yu, G. 2009. A comparison of vegetation indices for corn and soybean vegetation condition monitoring. In: Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009. IEEE, 2009. p. IV-801-IV-804."},{"issue":"11","key":"10.1016\/j.compag.2018.12.027_b0375","doi-asserted-by":"crossref","first-page":"3364","DOI":"10.3390\/rs4113364","article-title":"How normalized difference vegetation index (NDVI) trends from advanced very high resolution radiometer (AVHRR) and syst\u00e8me probatoire d\u2019observation de la terre vegetation (SPOT VGT) time series differ in agricultural areas: an inner Mongolian case study","volume":"4","author":"Yin","year":"2012","journal-title":"Remote Sens."},{"issue":"6","key":"10.1016\/j.compag.2018.12.027_b0380","doi-asserted-by":"crossref","first-page":"693","DOI":"10.1007\/s11119-012-9274-5","article-title":"The application of small unmanned aerial systems for precision agriculture: a review","volume":"13","author":"Zhang","year":"2012","journal-title":"Precis. Agri."}],"container-title":["Computers and Electronics in Agriculture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918311347?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0168169918311347?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,11,12]],"date-time":"2019-11-12T12:12:29Z","timestamp":1573560749000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0168169918311347"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,1]]},"references-count":76,"alternative-id":["S0168169918311347"],"URL":"https:\/\/doi.org\/10.1016\/j.compag.2018.12.027","relation":{},"ISSN":["0168-1699"],"issn-type":[{"type":"print","value":"0168-1699"}],"subject":[],"published":{"date-parts":[[2019,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Modelling fuzzy combination of remote sensing vegetation index for durum wheat crop analysis","name":"articletitle","label":"Article Title"},{"value":"Computers and Electronics in Agriculture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compag.2018.12.027","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}